These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24227050)

  • 1. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: dynamics using a multireference potential.
    Kalinowski J; Räsänen M; Heinonen P; Kilpeläinen I; Gerber RB
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):265-8. PubMed ID: 24227050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemistry of the Simplest Criegee Intermediate, CH
    Li Y; Gong Q; Yue L; Wang W; Liu F
    J Phys Chem Lett; 2018 Mar; 9(5):978-981. PubMed ID: 29420035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study.
    Jiang L; Xu YS; Ding AZ
    J Phys Chem A; 2010 Dec; 114(47):12452-61. PubMed ID: 21053959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Criegee intermediates formed by ozonolysis of different double bonds.
    Kalinowski J; Heinonen P; Kilpeläinen I; Räsänen M; Gerber RB
    J Phys Chem A; 2015 Mar; 119(11):2318-25. PubMed ID: 25188402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO.
    Beames JM; Liu F; Lu L; Lester MI
    J Am Chem Soc; 2012 Dec; 134(49):20045-8. PubMed ID: 23206289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bond, ring tension and π-conjugation effects: methyl and vinyl substitutions dramatically change the photodynamics of Criegee intermediates.
    Li Y; Gong Q; Yang J; Feng Q; Song T; Wang W; Liu F
    Phys Chem Chem Phys; 2020 Jul; 22(27):15295-15302. PubMed ID: 32618986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CH
    Mazarei E; Barker JR
    Phys Chem Chem Phys; 2022 Jan; 24(2):914-927. PubMed ID: 34913447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H-X (X = H, CH
    Kumar M; Francisco JS
    J Phys Chem A; 2017 Dec; 121(49):9421-9428. PubMed ID: 29160705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production.
    Barber VP; Pandit S; Green AM; Trongsiriwat N; Walsh PJ; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2018 Aug; 140(34):10866-10880. PubMed ID: 30074392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.
    Lee EP; Mok DK; Shallcross DE; Percival CJ; Osborn DL; Taatjes CA; Dyke JM
    Chemistry; 2012 Sep; 18(39):12411-23. PubMed ID: 22907644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyacetone Production From C
    Taatjes CA; Liu F; Rotavera B; Kumar M; Caravan R; Osborn DL; Thompson WH; Lester MI
    J Phys Chem A; 2017 Jan; 121(1):16-23. PubMed ID: 28001404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Kinetic Measurements of a Cyclic Criegee Intermediate; Unimolecular Decomposition of
    Peltola J; Heinonen P; Eskola A
    J Phys Chem Lett; 2024 May; 15(20):5331-5336. PubMed ID: 38727747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.