These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24227115)
1. Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins. Barbehenn RV; Martin MM; Hagerman AE J Chem Ecol; 1996 Oct; 22(10):1901-19. PubMed ID: 24227115 [TBL] [Abstract][Full Text] [Related]
2. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. Barbehenn RV; Martin MM J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724 [TBL] [Abstract][Full Text] [Related]
3. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Barbehenn RV J Chem Ecol; 2002 Jul; 28(7):1329-47. PubMed ID: 12199499 [TBL] [Abstract][Full Text] [Related]
4. Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Barbehenn RV Arch Insect Biochem Physiol; 2001 Jun; 47(2):86-99. PubMed ID: 11376455 [TBL] [Abstract][Full Text] [Related]
5. Non-absorption of ingested lipophilic and amphiphilic allelochemicals by generalist grasshoppers: the role of extractive ultrafiltration by the peritrophic envelope. Barbehenn RV Arch Insect Biochem Physiol; 1999 Oct; 42(2):130-7. PubMed ID: 10504206 [TBL] [Abstract][Full Text] [Related]
6. Tannins in plant-herbivore interactions. Barbehenn RV; Peter Constabel C Phytochemistry; 2011 Sep; 72(13):1551-65. PubMed ID: 21354580 [TBL] [Abstract][Full Text] [Related]
7. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684 [TBL] [Abstract][Full Text] [Related]
8. Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. Barbehenn RV J Chem Ecol; 2003 Mar; 29(3):683-702. PubMed ID: 12757328 [TBL] [Abstract][Full Text] [Related]
9. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746 [TBL] [Abstract][Full Text] [Related]
10. Permeability of the Peritrophic Envelopes of Herbivorous Insects to Dextran Sulfate: a Test of the Polyanion Exclusion Hypothesis. MARTIN MM; BARBEHENN RV J Insect Physiol; 1997 Mar; 43(3):243-249. PubMed ID: 12769908 [TBL] [Abstract][Full Text] [Related]
11. [Interaction of yeasts with tannins. II. Study of various yeasts hydrolysing tannic acid in tannin culture media]. Jacob FH; Pignal MC Mycopathologia; 1975 Dec; 57(3):139-48. PubMed ID: 2872 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. Barbehenn RV; Stannard J J Insect Physiol; 2004 Sep; 50(9):783-90. PubMed ID: 15350499 [TBL] [Abstract][Full Text] [Related]
13. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins. Gross EM; Brune A; Walenciak O J Insect Physiol; 2008 Feb; 54(2):462-71. PubMed ID: 18171578 [TBL] [Abstract][Full Text] [Related]
14. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Hartzfeld PW; Forkner R; Hunter MD; Hagerman AE J Agric Food Chem; 2002 Mar; 50(7):1785-90. PubMed ID: 11902913 [TBL] [Abstract][Full Text] [Related]
15. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea. Manuwoto S; Scriber JM Oecologia; 1986 May; 69(2):225-230. PubMed ID: 28311363 [TBL] [Abstract][Full Text] [Related]
16. Characterization of ellagitannins, gallotannins, and bound proanthocyanidins from California almond (Prunus dulcis) varieties. Xie L; Roto AV; Bolling BW J Agric Food Chem; 2012 Dec; 60(49):12151-6. PubMed ID: 23167850 [TBL] [Abstract][Full Text] [Related]
17. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Karowe DN Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836 [TBL] [Abstract][Full Text] [Related]
18. EFFECT OF WATER EXTRACTS OF CAROB PODS, TANNIC ACID, AND THEIR DERIVATIVES ON THE MORPHOLOGY AND GROWTH OF MICROORGANISMS. HENIS Y; TAGARI H; VOLCANI R Appl Microbiol; 1964 May; 12(3):204-9. PubMed ID: 14170956 [TBL] [Abstract][Full Text] [Related]
19. Evaluating ascorbate oxidase as a plant defense against leaf-chewing insects using transgenic poplar. Barbehenn RV; Jaros A; Yip L; Tran L; Kanellis AK; Constabel CP J Chem Ecol; 2008 Oct; 34(10):1331-40. PubMed ID: 18773241 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of condensed and hydrolyzable tannin on polyphenol oxidase activity of attine symbiotic fungus. Nichols-Orians C J Chem Ecol; 1991 Sep; 17(9):1811-9. PubMed ID: 24257922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]