These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24227115)
21. Tannic acid and oxidized tannic acid on the functional state of rat intestinal epithelium. Mitjavila S; Lacombe C; Carrera G; Derache R J Nutr; 1977 Dec; 107(12):2113-21. PubMed ID: 925759 [TBL] [Abstract][Full Text] [Related]
22. [Comparative study of effects of tannic acid and oxidized tannic acid on growth, body composition and biological utilization of nutriments in rats]. Mitjavila S; Lacombe C; Luong-Dinh C Nutr Metab; 1978; 22(1):8-21. PubMed ID: 619315 [TBL] [Abstract][Full Text] [Related]
23. [Tannins, a new family of bio-active natural organic compounds (questions and answers)]. Okuda T Yakugaku Zasshi; 1995 Feb; 115(2):81-100. PubMed ID: 7722881 [TBL] [Abstract][Full Text] [Related]
24. Structural Features of Hydrolyzable Tannins Determine Their Ability to Form Insoluble Complexes with Bovine Serum Albumin. Engström MT; Arvola J; Nenonen S; Virtanen VTJ; Leppä MM; Tähtinen P; Salminen JP J Agric Food Chem; 2019 Jun; 67(24):6798-6808. PubMed ID: 31134805 [TBL] [Abstract][Full Text] [Related]
25. Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements. Oćwieja M; Adamczyk Z; Morga M J Colloid Interface Sci; 2015 Jan; 438():249-258. PubMed ID: 25454449 [TBL] [Abstract][Full Text] [Related]
26. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. Barbehenn RV; Jones CP; Hagerman AE; Karonen M; Salminen JP J Chem Ecol; 2006 Oct; 32(10):2253-67. PubMed ID: 17019621 [TBL] [Abstract][Full Text] [Related]
27. Oxygen consumption rates by different oenological tannins in a model wine solution. Pascual O; Vignault A; Gombau J; Navarro M; Gómez-Alonso S; García-Romero E; Canals JM; Hermosín-Gutíerrez I; Teissedre PL; Zamora F Food Chem; 2017 Nov; 234():26-32. PubMed ID: 28551234 [TBL] [Abstract][Full Text] [Related]
28. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Vignault A; González-Centeno MR; Pascual O; Gombau J; Jourdes M; Moine V; Iturmendi N; Canals JM; Zamora F; Teissedre PL Food Chem; 2018 Dec; 268():210-219. PubMed ID: 30064750 [TBL] [Abstract][Full Text] [Related]
29. Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis. Arapitsas P; Menichetti S; Vincieri FF; Romani A J Agric Food Chem; 2007 Jan; 55(1):48-55. PubMed ID: 17199312 [TBL] [Abstract][Full Text] [Related]
30. Biodegradation of gallotannins and ellagitannins. Li M; Kai Y; Qiang H; Dongying J J Basic Microbiol; 2006; 46(1):68-84. PubMed ID: 16463321 [TBL] [Abstract][Full Text] [Related]
31. Chemical studies of proanthocyanidins and hydrolyzable tannins. Bors W; Foo LY; Hertkorn N; Michel C; Stettmaier K Antioxid Redox Signal; 2001 Dec; 3(6):995-1008. PubMed ID: 11813994 [TBL] [Abstract][Full Text] [Related]
32. Oligomeric hydrolyzable tannins from Monochaetum multiflorum. Isaza JH; Ito H; Yoshida T Phytochemistry; 2004 Feb; 65(3):359-67. PubMed ID: 14751308 [TBL] [Abstract][Full Text] [Related]
33. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. Barbehenn R; Weir Q; Salminen JP J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142 [TBL] [Abstract][Full Text] [Related]
34. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation. Chávez-González ML; Guyot S; Rodríguez-Herrera R; Prado-Barragán A; Aguilar CN Appl Biochem Biotechnol; 2018 Jun; 185(2):476-483. PubMed ID: 29181764 [TBL] [Abstract][Full Text] [Related]
35. Effects of purified persimmon tannin and tannic acid on survival and reproduction of bean bug, Riptortus clavatus. Park CG; Lee KC; Lee DW; Choo HY; Albert PJ J Chem Ecol; 2004 Nov; 30(11):2269-83. PubMed ID: 15672670 [TBL] [Abstract][Full Text] [Related]
36. Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits. Clauss M; Lason K; Gehrke J; Lechner-Doll M; Fickel J; Grune T; Jürgen Streich W Comp Biochem Physiol B Biochem Mol Biol; 2003 Oct; 136(2):369-82. PubMed ID: 14529762 [TBL] [Abstract][Full Text] [Related]
37. Identification of histatins as tannin-binding proteins in human saliva. Yan Q; Bennick A Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):341-7. PubMed ID: 7575474 [TBL] [Abstract][Full Text] [Related]
38. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins. Nelson KE; Pell AN; Schofield P; Zinder S Appl Environ Microbiol; 1995 Sep; 61(9):3293-8. PubMed ID: 7574640 [TBL] [Abstract][Full Text] [Related]
39. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Funatogawa K; Hayashi S; Shimomura H; Yoshida T; Hatano T; Ito H; Hirai Y Microbiol Immunol; 2004; 48(4):251-61. PubMed ID: 15107535 [TBL] [Abstract][Full Text] [Related]
40. Effects of tannins on digestion and detoxification activity in gray squirrels (Sciurus carolinensis). Chung-MacCoubrey AL; Hagerman AE; Kirkpatrick RL Physiol Zool; 1997; 70(3):270-7. PubMed ID: 9231400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]