These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24227333)

  • 41. Mechanism of function of dicyclohexylcarbodiimide-sensitive Na+/H+-antiporter in Halobacterium halobium: pH effect.
    Murakami N; Konishi T
    Arch Biochem Biophys; 1989 Jun; 271(2):515-23. PubMed ID: 2543299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proton motive force and Na+/H+ antiport in a moderate halophile.
    Hamaide F; Kushner DJ; Sprott GD
    J Bacteriol; 1983 Nov; 156(2):537-44. PubMed ID: 6313606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Membrane proton conductivity and energy-dependent fluxes of hydrogen ions in bacteria Enterococcus hirae grown in media with different pH values].
    Biofizika; 2005; 50(4):680-3. PubMed ID: 16212060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.
    Bolhuis H; Molenaar D; Poelarends G; van Veen HW; Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1994 Nov; 176(22):6957-64. PubMed ID: 7961458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion.
    Anderson SE; Dickinson CZ; Liu H; Cala PM
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C608-18. PubMed ID: 8779926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ATP on the calcium efflux in dialyzed squid giant axons.
    Dipolo R
    J Gen Physiol; 1974 Oct; 64(4):503-17. PubMed ID: 4418552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasma Membrane Na+ Transport in a Salt-Tolerant Charophyte (Isotopic Fluxes, Electrophysiology, and Thermodynamics in Plants Adapted to Saltwater and Freshwater).
    Kiegle EA; Bisson MA
    Plant Physiol; 1996 Aug; 111(4):1191-1197. PubMed ID: 12226356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Internodal cells of the giant green alga Chara as an expression system for ion channels.
    Lühring H; Witzemann V
    FEBS Lett; 1995 Mar; 361(1):65-9. PubMed ID: 7534238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of Na+-H+ exchange by N,N'-dicyclohexylcarbodiimide in isolated rat renal brush border membrane vesicles.
    Kinsella JL; Wehrle J; Wilkins N; Sacktor B
    J Biol Chem; 1987 May; 262(15):7092-7. PubMed ID: 3034881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the H Translocating Adenosine Triphosphatase and Pyrophosphatase of Vacuolar Membranes Isolated by Means of a Perfusion Technique from Chara corallina.
    Takeshige K; Tazawa M; Hager A
    Plant Physiol; 1988 Apr; 86(4):1168-73. PubMed ID: 16666049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of membrane potential on calcium efflux from giant axons of Loligo.
    Allen TJ; Baker PF
    J Physiol; 1986 Sep; 378():77-96. PubMed ID: 3795113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII.
    Kataev AA; Andreeva-Kovalevskaya ZI; Solonin AS; Ternovsky VI
    Biochim Biophys Acta; 2012 May; 1818(5):1235-41. PubMed ID: 22281415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Demonstration of the K+ channel in the plasmalemma of tonoplast-free cells of Chara australis.
    Tazawa M; Shimmen T
    Plant Cell Physiol; 1980 Dec; 21(8):1535-40. PubMed ID: 25385969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DCCD-sensitive Na+-transport in the membrane vesicles of Halobacterium halobium.
    Murakami N; Konishi T
    J Biochem; 1988 Feb; 103(2):231-6. PubMed ID: 3372488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.
    Morgan K; Canessa M
    J Membr Biol; 1990 Dec; 118(3):193-214. PubMed ID: 1963903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short-term inhibition of the Na-H exchanger limits acidosis and reduces ischemic injury in the rat heart.
    Schaefer S; Ramasamy R
    Cardiovasc Res; 1997 May; 34(2):329-36. PubMed ID: 9205547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule.
    Kurtz I
    J Clin Invest; 1987 Oct; 80(4):928-35. PubMed ID: 2888787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri.
    Peinemann S; Müller V; Blaut M; Gottschalk G
    J Bacteriol; 1988 Mar; 170(3):1369-72. PubMed ID: 3343222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of internal and external pH on amiloride-blockable Na+ transport across toad urinary bladder vesicles.
    Garty H; Civan ED; Civan MM
    J Membr Biol; 1985; 87(1):67-75. PubMed ID: 2414448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.