These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 242274)

  • 1. Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle.
    Siefermann D; Yamamoto HY
    Arch Biochem Biophys; 1975 Nov; 171(1):70-7. PubMed ID: 242274
    [No Abstract]   [Full Text] [Related]  

  • 2. NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts.
    Siefermann D; Yamamoto HY
    Biochem Biophys Res Commun; 1975 Jan; 62(2):456-61. PubMed ID: 234228
    [No Abstract]   [Full Text] [Related]  

  • 3. Properties of photoreductions by photosystem II in isolated chloroplasts. 3. The effect of uncouplers on phenylenediamine shuttles accross the membrane in the presence of dibromothymoquinone.
    Trebst A; Reimer S
    Biochim Biophys Acta; 1973 Dec; 325(3):546-57. PubMed ID: 4130441
    [No Abstract]   [Full Text] [Related]  

  • 4. Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts.
    Heber U
    Biochim Biophys Acta; 1973 Apr; 305(1):140-52. PubMed ID: 4146342
    [No Abstract]   [Full Text] [Related]  

  • 5. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin inhibition of photosynthetic pyridine nucleotide reduction.
    Selman BR; Bannister TT
    Biochim Biophys Acta; 1974 Apr; 347(1):113-25. PubMed ID: 4154779
    [No Abstract]   [Full Text] [Related]  

  • 7. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark.
    Mills JD; Crowther D; Slovacek RE; Hind G; McCarty RE
    Biochim Biophys Acta; 1979 Jul; 547(1):127-37. PubMed ID: 37900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase.
    Büch K; Stransky H; Hager A
    FEBS Lett; 1995 Nov; 376(1-2):45-8. PubMed ID: 8521963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced de-epoxidation of violaxanthin in lettuce chloroPLASTS. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability.
    Siefermann D; Yamamoto HY
    Biochim Biophys Acta; 1974 Jul; 357(1):144-50. PubMed ID: 4414482
    [No Abstract]   [Full Text] [Related]  

  • 10. NADPH/NADP+ ratios in photosynthesizing reconstituted chloroplasts.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1976 Jun; 430(3):478-89. PubMed ID: 7297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotenoid transformations underlying the blue absorbance change in flashed leaves during the induction of oxygen evolution.
    Siefermann-Harms D; Michel JM; Collard F
    Biochim Biophys Acta; 1980 Feb; 589(2):313-23. PubMed ID: 7356988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis and modulation of membrane properties in greening Chlamydomonas reinhardi, y-1 cells.
    Ohad I
    Methods Enzymol; 1974; 32():865-71. PubMed ID: 4155472
    [No Abstract]   [Full Text] [Related]  

  • 13. Light-dependent absorption and selective scattering changes at 518 nm in chloroplast thylakoid membranes.
    Thorne SW; Horvath G; Kahn A; Boardman NK
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3858-62. PubMed ID: 669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton release into the internal phase of thylakoids due to photosynthetic water oxidation. On the periodicity under flashing light.
    Junge W; Renger G; Ausländer W
    FEBS Lett; 1977 Jul; 79(1):155-9. PubMed ID: 19287
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region.
    Yamamoto HY; Kamite L
    Biochim Biophys Acta; 1972 Jun; 267(3):538-43. PubMed ID: 5047136
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition of photosynthetic electron transport in tobacco chloroplasts and thylakoids of the blue green alga Oscillatoria chalybea by an antiserum to synthetic zeaxanthin.
    Lehmann-Kirk U; Bader KP; Schmid GH; Radunz A
    Z Naturforsch C Biosci; 1979 Dec; 34(12):1218-21. PubMed ID: 44593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of oxygen on electron transfers in photosynthesis. II. Effect of very low oxygen concentrations on the reduction of NADP+ by isolated chloroplasts].
    Mathieu Y
    Biochim Biophys Acta; 1969; 189(3):422-8. PubMed ID: 4391419
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparative study of the inhibitory action on the oxygen-evolution system of various chemical and physical treatments of Euglena chloroplasts.
    Katoh S; Pietro AS
    Arch Biochem Biophys; 1968 Nov; 128(2):378-86. PubMed ID: 4386973
    [No Abstract]   [Full Text] [Related]  

  • 20. Energy-dependent reverse electron flow in chloroplasts.
    Rienits KG; Hardt H; Avron M
    Eur J Biochem; 1974 Apr; 43(2):291-8. PubMed ID: 4838984
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.