These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24227553)

  • 1. Phosphoproteome analysis of Lotus japonicus seeds.
    Ino Y; Ishikawa A; Nomura A; Kajiwara H; Harada K; Hirano H
    Proteomics; 2014 Jan; 14(1):116-20. PubMed ID: 24227553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome analysis of pod and seed development in the model legume Lotus japonicus.
    Nautrup-Pedersen G; Dam S; Laursen BS; Siegumfeldt AL; Nielsen K; Goffard N; Stærfeldt HH; Friis C; Sato S; Tabata S; Lorentzen A; Roepstorff P; Stougaard J
    J Proteome Res; 2010 Nov; 9(11):5715-26. PubMed ID: 20831161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.
    Yamauchi D; Tamaoki D; Hayami M; Takeuchi M; Karahara I; Sato M; Toyooka K; Nishioka H; Terada Y; Uesugi K; Takano H; Kagoshima Y; Mineyuki Y
    Microscopy (Oxf); 2013 Jun; 62(3):353-61. PubMed ID: 23220770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of phosphoproteome in rice pistil.
    Wang K; Zhao Y; Li M; Gao F; Yang MK; Wang X; Li S; Yang P
    Proteomics; 2014 Oct; 14(20):2319-34. PubMed ID: 25074045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome reference maps of the Lotus japonicus nodule and root.
    Dam S; Dyrlund TF; Ussatjuk A; Jochimsen B; Nielsen K; Goffard N; Ventosa M; Lorentzen A; Gupta V; Andersen SU; Enghild JJ; Ronson CW; Roepstorff P; Stougaard J
    Proteomics; 2014 Feb; 14(2-3):230-40. PubMed ID: 24293220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination.
    Li M; Yin X; Sakata K; Yang P; Komatsu S
    J Proteome Res; 2015 Jul; 14(7):2884-96. PubMed ID: 26035336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary electrophoresis-mass spectrometry for Peptide analysis: target-based approaches and proteomics/peptidomics strategies.
    Simó C; Cifuentes A; Kašička V
    Methods Mol Biol; 2013; 984():139-51. PubMed ID: 23386342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances and challenges in plant phosphoproteomics.
    Silva-Sanchez C; Li H; Chen S
    Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EBprot: Statistical analysis of labeling-based quantitative proteomics data.
    Koh HW; Swa HL; Fermin D; Ler SG; Gunaratne J; Choi H
    Proteomics; 2015 Aug; 15(15):2580-91. PubMed ID: 25913743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.
    Ding Y; Cheng H; Song S
    Sci China C Life Sci; 2008 Sep; 51(9):842-53. PubMed ID: 18726532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined N-glycome and N-glycoproteome analysis of the Lotus japonicus seed globulin fraction shows conservation of protein structure and glycosylation in legumes.
    Dam S; Thaysen-Andersen M; Stenkjær E; Lorentzen A; Roepstorff P; Packer NH; Stougaard J
    J Proteome Res; 2013 Jul; 12(7):3383-92. PubMed ID: 23799247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination.
    Yuan JP; Liu YB; Peng J; Wang JH; Liu X
    J Agric Food Chem; 2009 Oct; 57(19):9002-10. PubMed ID: 19807159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds.
    De La Fuente M; Borrajo A; Bermúdez J; Lores M; Alonso J; López M; Santalla M; De Ron AM; Zapata C; Alvarez G
    J Proteomics; 2011 Feb; 74(2):262-7. PubMed ID: 20971221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteome profile of embryogenic cell suspensions of Coffea arabica L.
    Campos NA; Paiva LV; Panis B; Carpentier SC
    Proteomics; 2016 Mar; 16(6):1001-5. PubMed ID: 27001127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and partitioning of the ionome in seeds and germinating seedlings of winter oilseed rape.
    Eggert K; von Wirén N
    Metallomics; 2013 Sep; 5(9):1316-25. PubMed ID: 23939714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome and phosphoproteome analysis of chromatin associated proteins in rice (Oryza sativa).
    Tan F; Li G; Chitteti BR; Peng Z
    Proteomics; 2007 Dec; 7(24):4511-27. PubMed ID: 18022940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape.
    Agrawal GK; Thelen JJ
    Mol Cell Proteomics; 2006 Nov; 5(11):2044-59. PubMed ID: 16825184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of (+)-5-deoxystrigol by Lotus japonicus root culture.
    Sugimoto Y; Ueyama T
    Phytochemistry; 2008 Jan; 69(1):212-7. PubMed ID: 17655890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.