These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24227553)

  • 21. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic snapshot of spearmint (Mentha spicata L.) leaf trichomes: a genuine terpenoid factory.
    Champagne A; Boutry M
    Proteomics; 2013 Nov; 13(22):3327-32. PubMed ID: 24124164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The proteome of seed development in the model legume Lotus japonicus.
    Dam S; Laursen BS; Ornfelt JH; Jochimsen B; Staerfeldt HH; Friis C; Nielsen K; Goffard N; Besenbacher S; Krusell L; Sato S; Tabata S; Thøgersen IB; Enghild JJ; Stougaard J
    Plant Physiol; 2009 Mar; 149(3):1325-40. PubMed ID: 19129418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.
    Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X
    Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense.
    Serna-Sanz A; Parniske M; Peck SC
    Mol Plant Microbe Interact; 2011 Aug; 24(8):932-7. PubMed ID: 21446788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the centromere-specific histone H3 variant in Lotus japonicus.
    Tek AL; Kashihara K; Murata M; Nagaki K
    Gene; 2014 Mar; 538(1):8-11. PubMed ID: 24462968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the plant phosphoproteome: tools and strategies for a challenging task.
    Laugesen S; Bergoin A; Rossignol M
    Plant Physiol Biochem; 2004 Dec; 42(12):929-36. PubMed ID: 15707831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion.
    Ramsubramaniam N; Harris SD; Marten MR
    Proteomics; 2014 Nov; 14(21-22):2454-9. PubMed ID: 25116090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)--IMAC enrichment and ESI-Q-TOF MS.
    Hu Y; Guo S; Li X; Ren X
    Electrophoresis; 2013 Feb; 34(4):485-92. PubMed ID: 23172588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons.
    Arai Y; Hayashi M; Nishimura M
    Plant Cell Physiol; 2008 Apr; 49(4):526-39. PubMed ID: 18281324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean.
    Meyer LJ; Gao J; Xu D; Thelen JJ
    Plant Physiol; 2012 May; 159(1):517-28. PubMed ID: 22440515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated Seed Proteome and Phosphoproteome Analyses Reveal Interplay of Nutrient Dynamics, Carbon-Nitrogen Partitioning, and Oxidative Signaling in Chickpea.
    Sinha A; Haider T; Narula K; Ghosh S; Chakraborty N; Chakraborty S
    Proteomics; 2020 Apr; 20(8):e1900267. PubMed ID: 32146728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoproteome Characterization of Human Colorectal Cancer SW620 Cell-Derived Exosomes and New Phosphosite Discovery for C-HPP.
    Guo J; Cui Y; Yan Z; Luo Y; Zhang W; Deng S; Tang S; Zhang G; He QY; Wang T
    J Proteome Res; 2016 Nov; 15(11):4060-4072. PubMed ID: 27470641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Phosphoproteomic Analysis of Legume Using TiO
    Barua P; Lande NV; Kumar S; Chakraborty S; Chakraborty N
    Methods Mol Biol; 2020; 2107():395-406. PubMed ID: 31893461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P
    Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphoproteins analysis in plants: a proteomic approach.
    Laugesen S; Messinese E; Hem S; Pichereaux C; Grat S; Ranjeva R; Rossignol M; Bono JJ
    Phytochemistry; 2006 Oct; 67(20):2208-14. PubMed ID: 16962150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.).
    Ogura T; Ogihara J; Sunairi M; Takeishi H; Aizawa T; Olivos-Trujillo MR; Maureira-Butler IJ; Salvo-Garrido HE
    Proteomics; 2014 Jun; 14(12):1543-6. PubMed ID: 24723484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed.
    Kottapalli KR; Zabet-Moghaddam M; Rowland D; Faircloth W; Mirzaei M; Haynes PA; Payton P
    J Proteome Res; 2013 Nov; 12(11):5048-57. PubMed ID: 24094305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.