These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24227599)

  • 1. Nonlinear resonance effects during ion storage in a quadrupole ion trap.
    Eades DM; Johnson JV; Yost RA
    J Am Soc Mass Spectrom; 1993 Dec; 4(12):917-29. PubMed ID: 24227599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space-charge effects with mass-selective axial ejection from a linear quadrupole ion trap.
    Qiao H; Gao C; Mao D; Konenkov N; Douglas DJ
    Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3509-20. PubMed ID: 22095499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.
    Webb IK; Londry FA; McLuckey SA
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2500-10. PubMed ID: 21818811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance excitation and dynamic collision-induced dissociation in quadrupole ion traps using higher-order excitation frequencies.
    Laskay UA; Jackson GP
    Rapid Commun Mass Spectrom; 2008 Aug; 22(15):2342-8. PubMed ID: 18613279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.
    Snyder DT; Pulliam CJ; Wiley JS; Duncan J; Cooks RG
    J Am Soc Mass Spectrom; 2016 Jul; 27(7):1243-55. PubMed ID: 27032650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory calculations of space-charge-induced mass shifts in a linear quadrupole ion trap.
    Douglas DJ; Konenkov NV
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2105-14. PubMed ID: 22886806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of collision-induced dissociation rates for tantalum oxide ions in a quadrupole ion trap.
    Duckworth DC; Goeringer DE; McLuckey SA
    J Am Soc Mass Spectrom; 2000 Dec; 11(12):1072-8. PubMed ID: 11118114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical mass shifts in resonance ejection experiments in the quadrupole ion trap.
    Li H; Plass WR; Patterson GE; Cooks RG
    J Mass Spectrom; 2002 Oct; 37(10):1051-8. PubMed ID: 12375279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally assisted collision-induced dissociation in a quadrupole ion trap mass spectrometer.
    Racine AH; Payne AH; Remes PM; Glish GL
    Anal Chem; 2006 Jul; 78(13):4609-14. PubMed ID: 16808472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.
    Xia Y; Liang X; McLuckey SA
    Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.
    Peng Y; Hansen BJ; Quist H; Zhang Z; Wang M; Hawkins AR; Austin DE
    Anal Chem; 2011 Jul; 83(14):5578-84. PubMed ID: 21615163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored noise waveform/collision-induced dissociation of ions stored in a linear ion trap combined with liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry.
    Vilkov AN; Bogdanov B; Pasa-Tolić L; Prior DC; Anderson GA; Masselon CD; Moore RJ; Smith RD
    Rapid Commun Mass Spectrom; 2004; 18(22):2682-90. PubMed ID: 15487023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion motion in the rectangular wave quadrupole field and digital operation mode of a quadrupole ion trap mass spectrometer.
    Ding L; Kumashiro S
    Rapid Commun Mass Spectrom; 2006; 20(1):3-8. PubMed ID: 16308895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study.
    Wang Y; Huang Z; Jiang Y; Xiong X; Deng Y; Fang X; Xu W
    J Mass Spectrom; 2013 Aug; 48(8):937-44. PubMed ID: 23893641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches.
    Demelbauer UM; Zehl M; Plematl A; Allmaier G; Rizzi A
    Rapid Commun Mass Spectrom; 2004; 18(14):1575-82. PubMed ID: 15282782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Study of Dual-Direction Dipolar Excitation of Ions in Linear Ion Traps.
    Dang Q; Xu F; Wang L; Huang X; Dai X; Fang X; Wang R; Ding CF
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):596-606. PubMed ID: 26810433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma source ion trap mass spectrometry: Enhanced abundance sensitivity by resonant ejection of atomic ions.
    Eiden GC; Barinaga CJ; Koppenaal DW
    J Am Soc Mass Spectrom; 1996 Nov; 7(11):1161-71. PubMed ID: 24203079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unintended parametric ejection of ions from an ion cyclotron resonance trap by two- electrode axialization.
    Martinez F; Herlert A; Marx G; Schweikhard L; Walsh N
    Eur J Mass Spectrom (Chichester); 2009; 15(2):283-91. PubMed ID: 19423913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into factors affecting precision in ion trap mass spectrometry using different scan directions and axial modulation potential amplitudes.
    Dobson G; Murrell J; Despeyroux D; Wind F; Tabet JC
    J Mass Spectrom; 2004 Nov; 39(11):1295-304. PubMed ID: 15472990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successive Resonances for Ion Ejection at Arbitrary Frequencies in an Ion Trap.
    Snyder DT; Cooks RG
    J Am Soc Mass Spectrom; 2016 Dec; 27(12):1922-1928. PubMed ID: 27600577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.