These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24227724)

  • 1. N-cadherin sustains motility and polarity of future cortical interneurons during tangential migration.
    Luccardini C; Hennekinne L; Viou L; Yanagida M; Murakami F; Kessaris N; Ma X; Adelstein RS; Mège RM; Métin C
    J Neurosci; 2013 Nov; 33(46):18149-60. PubMed ID: 24227724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
    Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z
    Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental characterization of Zswim5 expression in the progenitor domains and tangential migration pathways of cortical interneurons in the mouse forebrain.
    Chang CC; Kuo HY; Chen SY; Lin WT; Lu KM; Saito T; Liu FC
    J Comp Neurol; 2020 Oct; 528(14):2404-2419. PubMed ID: 32144752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine stimulates differentiation and migration of cortical interneurons.
    Ohira K
    Biochem Biophys Res Commun; 2019 May; 512(3):577-583. PubMed ID: 30910356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration.
    Katayama K; Imai F; Campbell K; Lang RA; Zheng Y; Yoshida Y
    Development; 2013 Aug; 140(15):3139-45. PubMed ID: 23861058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical interneurons migrating on a pure substrate of N-cadherin exhibit fast synchronous centrosomal and nuclear movements and reduced ciliogenesis.
    Luccardini C; Leclech C; Viou L; Rio JP; Métin C
    Front Cell Neurosci; 2015; 9():286. PubMed ID: 26283922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cortical migrations from the medial and lateral ganglionic eminences.
    Anderson SA; Marín O; Horn C; Jennings K; Rubenstein JL
    Development; 2001 Feb; 128(3):353-63. PubMed ID: 11152634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity.
    Viou L; Atkins M; Rousseau V; Launay P; Masson J; Pace C; Murakami F; Barnier JV; Métin C
    Mol Psychiatry; 2024 Aug; 29(8):2296-2307. PubMed ID: 38454080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons.
    Cuevas E; Ausó E; Telefont M; Morreale de Escobar G; Sotelo C; Berbel P
    Eur J Neurosci; 2005 Aug; 22(3):541-51. PubMed ID: 16101736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.
    Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J
    Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from ganglionic eminence to cortical destinations.
    Li H; Chou SJ; Hamasaki T; Perez-Garcia CG; O'Leary DD
    Neural Dev; 2012 Feb; 7():10. PubMed ID: 22376909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate.
    Baudoin JP; Viou L; Launay PS; Luccardini C; Espeso Gil S; Kiyasova V; Irinopoulou T; Alvarez C; Rio JP; Boudier T; Lechaire JP; Kessaris N; Spassky N; Métin C
    Neuron; 2012 Dec; 76(6):1108-22. PubMed ID: 23259947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nocodazole-induced changes in microtubule dynamics impair the morphology and directionality of migrating medial ganglionic eminence cells.
    Baudoin JP; Alvarez C; Gaspar P; Métin C
    Dev Neurosci; 2008; 30(1-3):132-43. PubMed ID: 18075261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol consumption during early pregnancy alters the disposition of tangentially migrating GABAergic interneurons in the fetal cortex.
    Cuzon VC; Yeh PW; Yanagawa Y; Obata K; Yeh HH
    J Neurosci; 2008 Feb; 28(8):1854-64. PubMed ID: 18287502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Models to Analyze the Migration of MGE-Derived Interneurons.
    Leclech C; Métin C
    Methods Mol Biol; 2018; 1749():145-161. PubMed ID: 29525996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N
    J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons.
    Elbert A; Vogt D; Watson A; Levy M; Jiang Y; Brûlé E; Rowland ME; Rubenstein J; Bérubé NG
    J Neurosci; 2019 Jan; 39(1):177-192. PubMed ID: 30377227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence.
    Cuzon Carlson VC; Yeh HH
    Cereb Cortex; 2011 Aug; 21(8):1792-802. PubMed ID: 21148088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development.
    Miyoshi G; Fishell G
    Cereb Cortex; 2011 Apr; 21(4):845-52. PubMed ID: 20732898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex.
    Yokota Y; Gashghaei HT; Han C; Watson H; Campbell KJ; Anton ES
    PLoS One; 2007 Aug; 2(8):e794. PubMed ID: 17726524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.