These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Matsuyama S; Nagata N; Shirato K; Kawase M; Takeda M; Taguchi F J Virol; 2010 Dec; 84(24):12658-64. PubMed ID: 20926566 [TBL] [Abstract][Full Text] [Related]
6. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. Bertram S; Glowacka I; Müller MA; Lavender H; Gnirss K; Nehlmeier I; Niemeyer D; He Y; Simmons G; Drosten C; Soilleux EJ; Jahn O; Steffen I; Pöhlmann S J Virol; 2011 Dec; 85(24):13363-72. PubMed ID: 21994442 [TBL] [Abstract][Full Text] [Related]
7. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. Shulla A; Heald-Sargent T; Subramanya G; Zhao J; Perlman S; Gallagher T J Virol; 2011 Jan; 85(2):873-82. PubMed ID: 21068237 [TBL] [Abstract][Full Text] [Related]
8. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. Bertram S; Heurich A; Lavender H; Gierer S; Danisch S; Perin P; Lucas JM; Nelson PS; Pöhlmann S; Soilleux EJ PLoS One; 2012; 7(4):e35876. PubMed ID: 22558251 [TBL] [Abstract][Full Text] [Related]
9. ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells. Heindl MR; Rupp A-L; Schwerdtner M; Bestle D; Harbig A; De Rocher A; Schmacke LC; Staker B; Steinmetzer T; Stein DA; Moulton HM; Böttcher-Friebertshäuser E J Virol; 2024 Apr; 98(4):e0010224. PubMed ID: 38470058 [TBL] [Abstract][Full Text] [Related]
10. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Haga S; Yamamoto N; Nakai-Murakami C; Osawa Y; Tokunaga K; Sata T; Yamamoto N; Sasazuki T; Ishizaka Y Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7809-14. PubMed ID: 18490652 [TBL] [Abstract][Full Text] [Related]
11. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Glowacka I; Bertram S; Müller MA; Allen P; Soilleux E; Pfefferle S; Steffen I; Tsegaye TS; He Y; Gnirss K; Niemeyer D; Schneider H; Drosten C; Pöhlmann S J Virol; 2011 May; 85(9):4122-34. PubMed ID: 21325420 [TBL] [Abstract][Full Text] [Related]
12. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Simmons G; Zmora P; Gierer S; Heurich A; Pöhlmann S Antiviral Res; 2013 Dec; 100(3):605-14. PubMed ID: 24121034 [TBL] [Abstract][Full Text] [Related]
13. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. Reinke LM; Spiegel M; Plegge T; Hartleib A; Nehlmeier I; Gierer S; Hoffmann M; Hofmann-Winkler H; Winkler M; Pöhlmann S PLoS One; 2017; 12(6):e0179177. PubMed ID: 28636671 [TBL] [Abstract][Full Text] [Related]
14. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
15. Rhesus angiotensin converting enzyme 2 supports entry of severe acute respiratory syndrome coronavirus in Chinese macaques. Chen Y; Liu L; Wei Q; Zhu H; Jiang H; Tu X; Qin C; Chen Z Virology; 2008 Nov; 381(1):89-97. PubMed ID: 18801550 [TBL] [Abstract][Full Text] [Related]
16. Interaction of Human ACE2 to Membrane-Bound SARS-CoV-1 and SARS-CoV-2 S Glycoproteins. Anand SP; Chen Y; Prévost J; Gasser R; Beaudoin-Bussières G; Abrams CF; Pazgier M; Finzi A Viruses; 2020 Sep; 12(10):. PubMed ID: 33003587 [TBL] [Abstract][Full Text] [Related]
17. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. Song W; Gui M; Wang X; Xiang Y PLoS Pathog; 2018 Aug; 14(8):e1007236. PubMed ID: 30102747 [TBL] [Abstract][Full Text] [Related]
18. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S J Genet; 2021; 100(1):. PubMed ID: 33707363 [TBL] [Abstract][Full Text] [Related]
19. Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction Zheng M; Zhao X; Zheng S; Chen D; Du P; Li X; Jiang D; Guo JT; Zeng H; Lin H Emerg Microbes Infect; 2020 Dec; 9(1):1567-1579. PubMed ID: 32602823 [TBL] [Abstract][Full Text] [Related]
20. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Gkogkou E; Barnasas G; Vougas K; Trougakos IP Redox Biol; 2020 Sep; 36():101615. PubMed ID: 32863223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]