BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 24227885)

  • 1. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
    Howes SC; Alushin GM; Shida T; Nachury MV; Nogales E
    Mol Biol Cell; 2014 Jan; 25(2):257-66. PubMed ID: 24227885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
    Coombes C; Yamamoto A; McClellan M; Reid TA; Plooster M; Luxton GW; Alper J; Howard J; Gardner MK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7176-E7184. PubMed ID: 27803321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of α-tubulin acetylation on microtubule structure and stability.
    Eshun-Wilson L; Zhang R; Portran D; Nachury MV; Toso DB; Löhr T; Vendruscolo M; Bonomi M; Fraser JS; Nogales E
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10366-10371. PubMed ID: 31072936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.
    Soppina V; Herbstman JF; Skiniotis G; Verhey KJ
    PLoS One; 2012; 7(10):e48204. PubMed ID: 23110214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
    Kalebic N; Martinez C; Perlas E; Hublitz P; Bilbao-Cortes D; Fiedorczuk K; Andolfo A; Heppenstall PA
    Mol Cell Biol; 2013 Mar; 33(6):1114-23. PubMed ID: 23275437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. αTAT1 catalyses microtubule acetylation at clathrin-coated pits.
    Montagnac G; Meas-Yedid V; Irondelle M; Castro-Castro A; Franco M; Shida T; Nachury MV; Benmerah A; Olivo-Marin JC; Chavrier P
    Nature; 2013 Oct; 502(7472):567-70. PubMed ID: 24097348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of α-tubulin acetylation on the doublet microtubule structure.
    Yang SK; Kubo S; Black CS; Peri K; Dai D; Legal T; Valente-Paterno M; Gaertig J; Bui KH
    Elife; 2024 Apr; 12():. PubMed ID: 38598282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities.
    Ly N; Elkhatib N; Bresteau E; Piétrement O; Khaled M; Magiera MM; Janke C; Le Cam E; Rutenberg AD; Montagnac G
    Sci Rep; 2016 Oct; 6():35624. PubMed ID: 27752143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of differentially modified microtubules using in vitro enzymatic approaches.
    Vemu A; Garnham CP; Lee DY; Roll-Mecak A
    Methods Enzymol; 2014; 540():149-66. PubMed ID: 24630106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule structure by cryo-EM: snapshots of dynamic instability.
    Manka SW; Moores CA
    Essays Biochem; 2018 Dec; 62(6):737-751. PubMed ID: 30315096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics.
    von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA
    Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
    Bell KM; Cha HK; Sindelar CV; Cochran JC
    J Biol Chem; 2017 Sep; 292(35):14680-14694. PubMed ID: 28701465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase.
    Szyk A; Deaconescu AM; Spector J; Goodman B; Valenstein ML; Ziolkowska NE; Kormendi V; Grigorieff N; Roll-Mecak A
    Cell; 2014 Jun; 157(6):1405-1415. PubMed ID: 24906155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex formation with kinesin motor domains affects the structure of microtubules.
    Krebs A; Goldie KN; Hoenger A
    J Mol Biol; 2004 Jan; 335(1):139-53. PubMed ID: 14659746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.
    Shida T; Cueva JG; Xu Z; Goodman MB; Nachury MV
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21517-22. PubMed ID: 21068373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of kinesin motors, microtubules, and MAPs.
    Marx A; Müller J; Mandelkow EM; Hoenger A; Mandelkow E
    J Muscle Res Cell Motil; 2006; 27(2):125-37. PubMed ID: 16362723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors.
    Downing KH; Nogales E
    Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human β-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability.
    Ti SC; Alushin GM; Kapoor TM
    Dev Cell; 2018 Oct; 47(2):175-190.e5. PubMed ID: 30245156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D electron microscopy of the interaction of kinesin with tubulin.
    Hirose K; Löwe J; Alonso M; Cross RA; Amos LA
    Cell Struct Funct; 1999 Oct; 24(5):277-84. PubMed ID: 15216883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.