BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24228248)

  • 1. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.
    Koo CL; Liew MJ; Mohamad MS; Salleh AH
    Biomed Res Int; 2013; 2013():432375. PubMed ID: 24228248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning for detecting gene-gene interactions: a review.
    McKinney BA; Reif DM; Ritchie MD; Moore JH
    Appl Bioinformatics; 2006; 5(2):77-88. PubMed ID: 16722772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases.
    Ritchie MD; White BC; Parker JS; Hahn LW; Moore JH
    BMC Bioinformatics; 2003 Jul; 4():28. PubMed ID: 12846935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epistasis Analysis: Classification Through Machine Learning Methods.
    Liu L; Wong KC
    Methods Mol Biol; 2021; 2212():337-345. PubMed ID: 33733366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A support vector machine approach for detecting gene-gene interaction.
    Chen SH; Sun J; Dimitrov L; Turner AR; Adams TS; Meyers DA; Chang BL; Zheng SL; Grönberg H; Xu J; Hsu FC
    Genet Epidemiol; 2008 Feb; 32(2):152-67. PubMed ID: 17968988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
    Yi T; Lin C; En-Ci J; Ji-Zhong Y
    Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brief Survey on Machine Learning in Epistasis.
    Chicco D; Faultless T
    Methods Mol Biol; 2021; 2212():169-179. PubMed ID: 33733356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rise and fall of supervised machine learning techniques.
    Jensen LJ; Bateman A
    Bioinformatics; 2011 Dec; 27(24):3331-2. PubMed ID: 22101152
    [No Abstract]   [Full Text] [Related]  

  • 11. SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies.
    Fang YH; Chiu YF
    Genet Epidemiol; 2012 Feb; 36(2):88-98. PubMed ID: 22851472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction.
    Moore JH
    Adv Genet; 2010; 72():101-16. PubMed ID: 21029850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of support vector machine in the detection of early cancer].
    Gao Z; Gong J; Qin Q; Lin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):1045-8. PubMed ID: 16294750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Bennett C; Farrokhi F; Piccardi M
    J Clin Neurosci; 2021 Jul; 89():177-198. PubMed ID: 34119265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.
    Moore JH; Gilbert JC; Tsai CT; Chiang FT; Holden T; Barney N; White BC
    J Theor Biol; 2006 Jul; 241(2):252-61. PubMed ID: 16457852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches.
    Sampson DL; Parker TJ; Upton Z; Hurst CP
    PLoS One; 2011; 6(9):e24973. PubMed ID: 21969867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence in drug combination therapy.
    Tsigelny IF
    Brief Bioinform; 2019 Jul; 20(4):1434-1448. PubMed ID: 29438494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach.
    Urbanowicz RJ; Andrew AS; Karagas MR; Moore JH
    J Am Med Inform Assoc; 2013; 20(4):603-12. PubMed ID: 23444013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Farrokhi F; Bennett C; Piccardi M; Sethi RK
    Neurosurg Rev; 2020 Oct; 43(5):1235-1253. PubMed ID: 31422572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.