These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24228249)
1. In silico modeling and functional interpretations of Cry1Ab15 toxin from Bacillus thuringiensis BtB-Hm-16. Kashyap S Biomed Res Int; 2013; 2013():471636. PubMed ID: 24228249 [TBL] [Abstract][Full Text] [Related]
2. The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. Xia LQ; Zhao XM; Ding XZ; Wang FX; Sun YJ J Mol Model; 2008 Sep; 14(9):843-8. PubMed ID: 18504623 [TBL] [Abstract][Full Text] [Related]
3. The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications. Xin-Min Z; Li-Qiu X; Xue-Zhi D; Fa-Xiang W Protein J; 2009 Feb; 28(2):104-10. PubMed ID: 19191014 [TBL] [Abstract][Full Text] [Related]
4. Computational tridimensional protein modeling of Cry1Ab19 toxin from Bacillus thuringiensis BtX-2. Kashyap S; Singh BD; Amla DV J Microbiol Biotechnol; 2012 Jun; 22(6):788-92. PubMed ID: 22573155 [TBL] [Abstract][Full Text] [Related]
5. Computational Modeling Deduced Three Dimensional Structure of Cry1Ab16 Toxin from Bacillus thuringiensis AC11. Kashyap S Indian J Microbiol; 2012 Jun; 52(2):263-9. PubMed ID: 23729892 [TBL] [Abstract][Full Text] [Related]
6. Homology modeling of Cry10Aa toxin from B. thuringiensis israelensis and B. thuringiensis subsp. LDC-9. Mahalakshmi A; Shenbagarathai R J Biomol Struct Dyn; 2010 Dec; 28(3):363-78. PubMed ID: 20919752 [TBL] [Abstract][Full Text] [Related]
7. Novel Bacillus thuringiensis δ-endotoxin active against Locusta migratoria manilensis. Wu Y; Lei CF; Yi D; Liu PM; Gao MY Appl Environ Microbiol; 2011 May; 77(10):3227-33. PubMed ID: 21441319 [TBL] [Abstract][Full Text] [Related]
8. Complete structure elucidation of a functional form of the Bacillus thuringiensis Cry4Ba δ-endotoxin: Insights into toxin-induced transmembrane pore architecture. Thamwiriyasati N; Kanchanawarin C; Imtong C; Chen CJ; Li HC; Angsuthanasombat C Biochem Biophys Res Commun; 2022 Sep; 620():158-164. PubMed ID: 35797735 [TBL] [Abstract][Full Text] [Related]
9. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918 [TBL] [Abstract][Full Text] [Related]
10. Evidence of the importance of the Met115 for Bacillus thuringiensis subsp. israelensis Cyt1Aa protein cytolytic activity in Escherichia coli. Zghal RZ; Trigui H; Ben Ali M; Jaoua S Mol Biotechnol; 2008 Feb; 38(2):121-7. PubMed ID: 17989942 [TBL] [Abstract][Full Text] [Related]
11. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. Boonserm P; Mo M; Angsuthanasombat C; Lescar J J Bacteriol; 2006 May; 188(9):3391-401. PubMed ID: 16621834 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis. Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471 [TBL] [Abstract][Full Text] [Related]
13. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry 11Bb toxin deduced by homology modelling. Gutierrez P; Alzate O; Orduz S Mem Inst Oswaldo Cruz; 2001 Apr; 96(3):357-64. PubMed ID: 11313644 [TBL] [Abstract][Full Text] [Related]
14. Rapid topology probing using fluorescence spectroscopy in planar lipid bilayer: the pore-forming mechanism of the toxin Cry1Aa of Bacillus thuringiensis. Groulx N; Juteau M; Blunck R J Gen Physiol; 2010 Nov; 136(5):497-513. PubMed ID: 20974771 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. Bravo A J Bacteriol; 1997 May; 179(9):2793-801. PubMed ID: 9139891 [No Abstract] [Full Text] [Related]
16. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
17. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS. Sriwimol W; Aroonkesorn A; Sakdee S; Kanchanawarin C; Uchihashi T; Ando T; Angsuthanasombat C J Biol Chem; 2015 Aug; 290(34):20793-20803. PubMed ID: 26112409 [TBL] [Abstract][Full Text] [Related]
18. Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane. Zavala LE; Pardo-López L; Cantón PE; Gómez I; Soberón M; Bravo A J Biol Chem; 2011 May; 286(21):19109-17. PubMed ID: 21464133 [TBL] [Abstract][Full Text] [Related]
19. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms. Plácido A; Coelho A; Abreu Nascimento L; Gomes Vasconcelos A; Fátima Barroso M; Ramos-Jesus J; Costa V; das Chagas Alves Lima F; Delerue-Matos C; Martins Ramos R; Marani MM; Roberto de Souza de Almeida Leite J Proteins; 2017 Jul; 85(7):1248-1257. PubMed ID: 28316108 [TBL] [Abstract][Full Text] [Related]
20. Residue 544 in domain III of the Bacillus thuringiensis Cry1Ac toxin is involved in protein structure stability. Liu YL; Wang QY; Wang FX; Ding XZ; Xia LQ Protein J; 2010 Aug; 29(6):440-4. PubMed ID: 20694575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]