These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 24228716)
1. Formal reduction potential of 3,5-difluorotyrosine in a structured protein: insight into multistep radical transfer. Ravichandran KR; Liang L; Stubbe J; Tommos C Biochemistry; 2013 Dec; 52(49):8907-15. PubMed ID: 24228716 [TBL] [Abstract][Full Text] [Related]
2. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. Ravichandran KR; Zong AB; Taguchi AT; Nocera DG; Stubbe J; Tommos C J Am Chem Soc; 2017 Mar; 139(8):2994-3004. PubMed ID: 28171730 [TBL] [Abstract][Full Text] [Related]
3. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Minnihan EC; Nocera DG; Stubbe J Acc Chem Res; 2013 Nov; 46(11):2524-35. PubMed ID: 23730940 [TBL] [Abstract][Full Text] [Related]
4. A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. Ravichandran KR; Taguchi AT; Wei Y; Tommos C; Nocera DG; Stubbe J J Am Chem Soc; 2016 Oct; 138(41):13706-13716. PubMed ID: 28068088 [TBL] [Abstract][Full Text] [Related]
5. 2,3-difluorotyrosine at position 356 of ribonucleotide reductase R2: a probe of long-range proton-coupled electron transfer. Yee CS; Chang MC; Ge J; Nocera DG; Stubbe J J Am Chem Soc; 2003 Sep; 125(35):10506-7. PubMed ID: 12940718 [TBL] [Abstract][Full Text] [Related]
6. Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Seyedsayamdost MR; Stubbe J Methods Enzymol; 2009; 462():45-76. PubMed ID: 19632469 [TBL] [Abstract][Full Text] [Related]
7. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. Oyala PH; Ravichandran KR; Funk MA; Stucky PA; Stich TA; Drennan CL; Britt RD; Stubbe J J Am Chem Soc; 2016 Jun; 138(25):7951-64. PubMed ID: 27276098 [TBL] [Abstract][Full Text] [Related]
8. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Ravichandran K; Minnihan EC; Lin Q; Yokoyama K; Taguchi AT; Shao J; Nocera DG; Stubbe J Biochemistry; 2017 Feb; 56(6):856-868. PubMed ID: 28103007 [TBL] [Abstract][Full Text] [Related]
9. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Lee W; Kasanmascheff M; Huynh M; Quartararo A; Costentin C; Bejenke I; Nocera DG; Bennati M; Tommos C; Stubbe J Biochemistry; 2018 Jun; 57(24):3402-3415. PubMed ID: 29630358 [TBL] [Abstract][Full Text] [Related]
10. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. Seyedsayamdost MR; Yee CS; Reece SY; Nocera DG; Stubbe J J Am Chem Soc; 2006 Feb; 128(5):1562-8. PubMed ID: 16448127 [TBL] [Abstract][Full Text] [Related]
11. Photochemical tyrosine oxidation in the structurally well-defined α3Y protein: proton-coupled electron transfer and a long-lived tyrosine radical. Glover SD; Jorge C; Liang L; Valentine KG; Hammarström L; Tommos C J Am Chem Soc; 2014 Oct; 136(40):14039-51. PubMed ID: 25121576 [TBL] [Abstract][Full Text] [Related]
12. Pourbaix Diagram, Proton-Coupled Electron Transfer, and Decay Kinetics of a Protein Tryptophan Radical: Comparing the Redox Properties of W Glover SD; Tyburski R; Liang L; Tommos C; Hammarström L J Am Chem Soc; 2018 Jan; 140(1):185-192. PubMed ID: 29190082 [TBL] [Abstract][Full Text] [Related]
13. Discovery of a New Class I Ribonucleotide Reductase with an Essential DOPA Radical and NO Metal as an Initiator of Long-Range Radical Transfer. Stubbe J; Seyedsayamdost MR Biochemistry; 2019 Feb; 58(6):435-437. PubMed ID: 30586288 [No Abstract] [Full Text] [Related]
14. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Yee CS; Seyedsayamdost MR; Chang MC; Nocera DG; Stubbe J Biochemistry; 2003 Dec; 42(49):14541-52. PubMed ID: 14661967 [TBL] [Abstract][Full Text] [Related]
15. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. Seyedsayamdost MR; Reece SY; Nocera DG; Stubbe J J Am Chem Soc; 2006 Feb; 128(5):1569-79. PubMed ID: 16448128 [TBL] [Abstract][Full Text] [Related]
16. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Olshansky L; Greene BL; Finkbeiner C; Stubbe J; Nocera DG Biochemistry; 2016 Jun; 55(23):3234-40. PubMed ID: 27159163 [TBL] [Abstract][Full Text] [Related]
17. De novo proteins as models of radical enzymes. Tommos C; Skalicky JJ; Pilloud DL; Wand AJ; Dutton PL Biochemistry; 1999 Jul; 38(29):9495-507. PubMed ID: 10413527 [TBL] [Abstract][Full Text] [Related]
18. Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. Cui C; Greene BL; Kang G; Drennan CL; Stubbe J; Nocera DG J Am Chem Soc; 2021 Jan; 143(1):176-183. PubMed ID: 33353307 [TBL] [Abstract][Full Text] [Related]
19. Use of 3-aminotyrosine to examine the pathway dependence of radical propagation in Escherichia coli ribonucleotide reductase. Minnihan EC; Seyedsayamdost MR; Stubbe J Biochemistry; 2009 Dec; 48(51):12125-32. PubMed ID: 19916558 [TBL] [Abstract][Full Text] [Related]
20. Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical. Berry BW; Martínez-Rivera MC; Tommos C Proc Natl Acad Sci U S A; 2012 Jun; 109(25):9739-43. PubMed ID: 22675121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]