These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 24228848)

  • 1. Use of creatine kinase to induce multistep reactions in infrared spectroscopic experiments.
    Eremina N; Barth A
    J Phys Chem B; 2013 Dec; 117(48):14967-72. PubMed ID: 24228848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.
    von Germar F; Barth A; Mäntele W
    Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra.
    Barth A; Mäntele W
    Biophys J; 1998 Jul; 75(1):538-44. PubMed ID: 9649416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study.
    Raimbault C; Buchet R; Vial C
    Eur J Biochem; 1996 Aug; 240(1):134-42. PubMed ID: 8797846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy.
    Raimbault C; Clottes E; Leydier C; Vial C; Buchet R
    Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase.
    Liu M; Karjalainen EL; Barth A
    Biophys J; 2005 May; 88(5):3615-24. PubMed ID: 15731382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy.
    Raimbault C; Perraut C; Marcillat O; Buchet R; Vial C
    Eur J Biochem; 1997 Dec; 250(3):773-82. PubMed ID: 9461301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model.
    Mahaney JE; Thomas DD; Froehlich JP
    Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+) transport of Ca(2+)-ATPase of the sarcoplasmic reticulum in an ADP-sensitive phosphoenzyme state.
    Ushimaru M; Fukushima Y
    J Biochem Mol Biol Biophys; 2002 Apr; 6(2):101-6. PubMed ID: 12186764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TNP-AMP binding to the sarcoplasmic reticulum Ca(2+)-ATPase studied by infrared spectroscopy.
    Liu M; Barth A
    Biophys J; 2003 Nov; 85(5):3262-70. PubMed ID: 14581226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of enzyme activity with infrared spectroscopy.
    Thoenges D; Barth A
    J Biomol Screen; 2002 Aug; 7(4):353-7. PubMed ID: 12230889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton liberation in the pre-steady state phase of creatine kinase.
    Pal PK; Khan LA; Amin M
    Indian J Biochem Biophys; 1993 Aug; 30(4):214-7. PubMed ID: 8276423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping nucleotide binding site of calcium ATPase with IR spectroscopy: effects of ATP gamma-phosphate binding.
    Liu M; Barth A
    Biopolymers; 2002; 67(4-5):267-70. PubMed ID: 12012444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP].
    Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS
    Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic cycling method using creatine kinase to measure creatine by real-time detection.
    Ueda S; Sakasegawa S
    Anal Biochem; 2016 Aug; 506():8-12. PubMed ID: 27173608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-Mg(2+)-NO(3)(-)-creatine transition-state analogue complex.
    Lahiri SD; Wang PF; Babbitt PC; McLeish MJ; Kenyon GL; Allen KN
    Biochemistry; 2002 Nov; 41(47):13861-7. PubMed ID: 12437342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and dephosphorylation reactions of the red beet plasma membrane ATPase studied in the transient state.
    Briskin DP
    Plant Physiol; 1988 Sep; 88(1):84-91. PubMed ID: 16666284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide (H
    Wang W; Lee J; Hao H; Park YD; Qian GY
    Int J Biol Macromol; 2017 Dec; 105(Pt 3):1595-1601. PubMed ID: 28279764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies.
    Hagemann H; Marcillat O; Buchet R; Vial C
    Biochemistry; 2000 Aug; 39(31):9251-6. PubMed ID: 10924118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model system of coupled activity of co-immobilized creatine kinase and myosin.
    Arrio-Dupont M; Béchet JJ; d'Albis A
    Eur J Biochem; 1992 Aug; 207(3):951-5. PubMed ID: 1386805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.