BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24228938)

  • 1. Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils.
    Wang L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2013; 47(23):13502-10. PubMed ID: 24228938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ imaging of interfacial precipitation of phosphate on Goethite.
    Wang L; Putnis CV; Ruiz-Agudo E; Hövelmann J; Putnis A
    Environ Sci Technol; 2015 Apr; 49(7):4184-92. PubMed ID: 25763812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.
    Obrycki JF; Scheckel KG; Basta NT
    Environ Pollut; 2017 Jan; 220(Pt A):549-556. PubMed ID: 27751639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite.
    Xie L; Giammar DE
    Environ Sci Technol; 2007 Dec; 41(23):8050-5. PubMed ID: 18186336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH.
    Zhang Z; Ren J; Wang M; Song X; Zhang C; Chen J; Li F; Guo G
    Chemosphere; 2016 Sep; 159():58-65. PubMed ID: 27276163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming cerussite to pyromorphite by immobilising Pb(II) using hydroxyapatite and Pseudomonas rhodesiae.
    Li J; Tian X; Bai R; Xiao X; Yang F; Zhao F
    Chemosphere; 2022 Jan; 287(Pt 2):132235. PubMed ID: 34826926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead phosphate minerals: solubility and dissolution by model and natural ligands.
    Martínez CE; Jacobson AR; Mcbride MB
    Environ Sci Technol; 2004 Nov; 38(21):5584-90. PubMed ID: 15575275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida.
    Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic speciation and quantification of lead in phosphate-amended soils.
    Scheckel KG; Ryan JA
    J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a lead-insoluble phase, pyromorphite, by hydroxyapatite during lead migration through the water-unsaturated soils of different lead mobilities.
    Ogawa S; Sato T; Katoh M
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7662-7671. PubMed ID: 29285700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil solid-phase controls lead activity in soil solution.
    Badawy SH; Helal MI; Chaudri AM; Lawlor K; McGrath SP
    J Environ Qual; 2002; 31(1):162-7. PubMed ID: 11841061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite.
    Scheckel KG; Ryan JA
    Environ Sci Technol; 2002 May; 36(10):2198-204. PubMed ID: 12038830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils.
    Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E
    Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant bioavailability in soils, sediments, and aquatic environments.
    Traina SJ; Laperche V
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3365-71. PubMed ID: 10097045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.