These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24229154)
61. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Karsten R; Swan A; Culina J Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120189. PubMed ID: 23319706 [TBL] [Abstract][Full Text] [Related]
62. Impact of wind turbine sound on annoyance, self-reported sleep disturbance and psychological distress. Bakker RH; Pedersen E; van den Berg GP; Stewart RE; Lok W; Bouma J Sci Total Environ; 2012 May; 425():42-51. PubMed ID: 22481052 [TBL] [Abstract][Full Text] [Related]
63. How the factoid of wind turbines causing 'vibroacoustic disease' came to be 'irrefutably demonstrated'. Chapman S; St George A Aust N Z J Public Health; 2013 Jun; 37(3):244-9. PubMed ID: 23731107 [TBL] [Abstract][Full Text] [Related]
64. Analyzing the effect of wind on flight: pitfalls and solutions. Shamoun-Baranes J; van Loon E; Liechti F; Bouten W J Exp Biol; 2007 Jan; 210(Pt 1):82-90. PubMed ID: 17170151 [TBL] [Abstract][Full Text] [Related]
65. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning. Elasha F; Shanbr S; Li X; Mba D Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336974 [TBL] [Abstract][Full Text] [Related]
66. Wind energy potential assessment based on wind speed, its direction and power data. Wang Z; Liu W Sci Rep; 2021 Aug; 11(1):16879. PubMed ID: 34413418 [TBL] [Abstract][Full Text] [Related]
67. Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees. Mushtaq K; Zou R; Waris A; Yang K; Wang J; Iqbal J; Jameel M PLoS One; 2023; 18(8):e0290316. PubMed ID: 37639426 [TBL] [Abstract][Full Text] [Related]
68. Wind turbine sound power measurements. Keith SE; Feder K; Voicescu SA; Soukhovtsev V; Denning A; Tsang J; Broner N; Richarz W; van den Berg F J Acoust Soc Am; 2016 Mar; 139(3):1431-5. PubMed ID: 27036281 [TBL] [Abstract][Full Text] [Related]
69. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade. Tian S; Yang Z; Chen X; Xie Y Sensors (Basel); 2015 Aug; 15(8):19992-20005. PubMed ID: 26287200 [TBL] [Abstract][Full Text] [Related]
70. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer. Ouari K; Rekioua T; Ouhrouche M ISA Trans; 2014 Jan; 53(1):76-84. PubMed ID: 24021543 [TBL] [Abstract][Full Text] [Related]
71. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design. Matha D; Sandner F; Molins C; Campos A; Cheng PW Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583870 [TBL] [Abstract][Full Text] [Related]
72. Experimental data on analysis of a horizontal axis small wind turbine with blade tip power system using permanent magnetic generator. Sivamani S; Micha Premkumar T; Vinod Kumar D; Kiran Kumar Reddy V; Dilip Reddy K; Dinesh Reddy K; Hariram V Data Brief; 2019 Apr; 23():103716. PubMed ID: 31372386 [TBL] [Abstract][Full Text] [Related]
73. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. Benbouzid M; Beltran B; Amirat Y; Yao G; Han J; Mangel H ISA Trans; 2014 May; 53(3):827-33. PubMed ID: 24530194 [TBL] [Abstract][Full Text] [Related]
74. Evaluation of global onshore wind energy potential and generation costs. Zhou Y; Luckow P; Smith SJ; Clarke L Environ Sci Technol; 2012 Jul; 46(14):7857-64. PubMed ID: 22715929 [TBL] [Abstract][Full Text] [Related]
75. From LCAs to simplified models: a generic methodology applied to wind power electricity. Padey P; Girard R; le Boulch D; Blanc I Environ Sci Technol; 2013 Feb; 47(3):1231-8. PubMed ID: 23259663 [TBL] [Abstract][Full Text] [Related]
76. Wind turbines: is there a human health risk? Roberts JD; Roberts MA J Environ Health; 2013 Apr; 75(8):8-13, 16-7. PubMed ID: 23621051 [TBL] [Abstract][Full Text] [Related]
77. Annoyance, detection and recognition of wind turbine noise. Van Renterghem T; Bockstael A; De Weirt V; Botteldooren D Sci Total Environ; 2013 Jul; 456-457():333-45. PubMed ID: 23624007 [TBL] [Abstract][Full Text] [Related]
78. Towards uncovering the structure of power fluctuations of wind farms. Liu H; Jin Y; Tobin N; Chamorro LP Phys Rev E; 2017 Dec; 96(6-1):063117. PubMed ID: 29347277 [TBL] [Abstract][Full Text] [Related]
79. Foundations for offshore wind turbines. Byrne BW; Houlsby GT Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2909-30. PubMed ID: 14667305 [TBL] [Abstract][Full Text] [Related]
80. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy. Staino A; Basu B Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]