These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24229233)

  • 1. Edge removal balances preferential attachment and triad closing.
    Brot H; Honig M; Muchnik L; Goldenberg J; Louzoun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042815. PubMed ID: 24229233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring complex networks through random walks.
    Costa Lda F; Travieso G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016102. PubMed ID: 17358219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of preference for attachment to low-degree nodes on the degree distributions of a growing directed network and a simple food-web model.
    Sevim V; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056115. PubMed ID: 16803006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying evolutionary and network dynamics.
    Swarup S; Gasser L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066114. PubMed ID: 17677332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning about knowledge: a complex network approach.
    Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026103. PubMed ID: 17025499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bose-Einstein condensation in random directed networks.
    Sotolongo-Costa O; Rodgers GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056118. PubMed ID: 14682857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of growing random networks.
    Krapivsky PL; Redner S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066123. PubMed ID: 11415189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of topological structure on complex networks.
    Nakamura I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):045104. PubMed ID: 14682990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The probability of edge existence due to node degree: a baseline for network-based predictions.
    Zietz M; Himmelstein DS; Kloster K; Williams C; Nagle MW; Greene CS
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex growing networks with intrinsic vertex fitness.
    Bedogne' C; Rodgers GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046115. PubMed ID: 17155141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The probability of edge existence due to node degree: a baseline for network-based predictions.
    Zietz M; Himmelstein DS; Kloster K; Williams C; Nagle MW; Greene CS
    Gigascience; 2024 Jan; 13():. PubMed ID: 38323677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact solutions for models of evolving networks with addition and deletion of nodes.
    Moore C; Ghoshal G; Newman ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036121. PubMed ID: 17025722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of shells in complex networks.
    Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-free networks which are highly assortative but not small world.
    Small M; Xu X; Zhou J; Zhang J; Sun J; Lu JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066112. PubMed ID: 18643341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling properties of scale-free evolving networks: continuous approach.
    Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056125. PubMed ID: 11414979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communities, clustering phase transitions, and hysteresis: pitfalls in constructing network ensembles.
    Foster D; Foster J; Paczuski M; Grassberger P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046115. PubMed ID: 20481794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture.
    Sen P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046107. PubMed ID: 15169069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.
    SendiƱa-Nadal I; Danziger MM; Wang Z; Havlin S; Boccaletti S
    Sci Rep; 2016 Feb; 6():21297. PubMed ID: 26887684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of weighted scale-free networks in empirical data.
    Eom YH; Jeon C; Jeong H; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056105. PubMed ID: 18643134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.