These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 24229254)
1. Accessible solitons in complex Ginzburg-Landau media. He Y; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042912. PubMed ID: 24229254 [TBL] [Abstract][Full Text] [Related]
2. Gap solitons in Ginzburg-Landau media. Sakaguchi H; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056606. PubMed ID: 18643185 [TBL] [Abstract][Full Text] [Related]
3. Localized modes in dissipative lattice media: an overview. He Y; Malomed BA; Mihalache D Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2027):. PubMed ID: 25246672 [TBL] [Abstract][Full Text] [Related]
4. Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity. Abdullaev FK; Salerno M Phys Rev E; 2018 May; 97(5-1):052208. PubMed ID: 29906973 [TBL] [Abstract][Full Text] [Related]
5. Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity. Burlak G; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062904. PubMed ID: 24483528 [TBL] [Abstract][Full Text] [Related]
6. Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating. Besse V; Leblond H; Mihalache D; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012916. PubMed ID: 23410413 [TBL] [Abstract][Full Text] [Related]
7. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Paulau PV; Gomila D; Colet P; Malomed BA; Firth WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036213. PubMed ID: 22060481 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional dissipative gap solitons. Sakaguchi H; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026606. PubMed ID: 19792271 [TBL] [Abstract][Full Text] [Related]
9. Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity. Zeng J; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036607. PubMed ID: 23031045 [TBL] [Abstract][Full Text] [Related]
11. Continuous emission of fundamental solitons from vortices in dissipative media by a radial-azimuthal potential. Liu B; He XD; Li SJ Opt Express; 2013 Mar; 21(5):5561-6. PubMed ID: 23482127 [TBL] [Abstract][Full Text] [Related]
12. Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials. Liu B; He YJ; Malomed BA; Wang XS; Kevrekidis PG; Wang TB; Leng FC; Qiu ZR; Wang HZ Opt Lett; 2010 Jun; 35(12):1974-6. PubMed ID: 20548357 [TBL] [Abstract][Full Text] [Related]
13. Class of compound dissipative solitons as a result of collisions in one and two spatial dimensions. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020901. PubMed ID: 25215679 [TBL] [Abstract][Full Text] [Related]
14. Quasi-one-dimensional solutions and their interaction with two-dimensional dissipative solitons. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022915. PubMed ID: 23496599 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of solitons under competing nonlinearities by external potentials. Zegadlo KB; Wasak T; Malomed BA; Karpierz MA; Trippenbach M Chaos; 2014 Dec; 24(4):043136. PubMed ID: 25554056 [TBL] [Abstract][Full Text] [Related]
18. Theory of dissipative solitons in complex Ginzburg-Landau systems. Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025601. PubMed ID: 18850890 [TBL] [Abstract][Full Text] [Related]
19. Stability conditions for moving dissipative solitons in one- and multidimensional systems with a linear potential. Zhu WL; He YJ Opt Express; 2010 Aug; 18(16):17053-8. PubMed ID: 20721093 [TBL] [Abstract][Full Text] [Related]
20. One- and two-dimensional modes in the complex Ginzburg-Landau equation with a trapping potential. Mayteevarunyoo T; Malomed BA; Skryabin DV Opt Express; 2018 Apr; 26(7):8849-8865. PubMed ID: 29715847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]