These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 24229267)

  • 1. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turing pattern dynamics in an activator-inhibitor system with superdiffusion.
    Zhang L; Tian C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback control of subcritical Turing instability with zero mode.
    Golovin AA; Kanevsky Y; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046218. PubMed ID: 19518323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion.
    Tian C
    Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.
    Schüler D; Alonso S; Torcini A; Bär M
    Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system.
    Ledesma-Durán A; Ortiz-Durán EA; Aragón JL; Santamaría-Holek I
    Phys Rev E; 2020 Sep; 102(3-1):032214. PubMed ID: 33076036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.
    Liu B; Wu R; Chen L
    Math Biosci; 2018 Apr; 298():71-79. PubMed ID: 29471009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instability criteria and pattern formation in the complex Ginzburg-Landau equation with higher-order terms.
    Mohamadou A; Ayissi BE; Kofané TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046604. PubMed ID: 17155189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instability of turing patterns in reaction-diffusion-ODE systems.
    Marciniak-Czochra A; Karch G; Suzuki K
    J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widening the criteria for emergence of Turing patterns.
    Kuznetsov M; Polezhaev A
    Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local control of globally competing patterns in coupled Swift-Hohenberg equations.
    Becker M; Frenzel T; Niedermayer T; Reichelt S; Mielke A; Bär M
    Chaos; 2018 Apr; 28(4):043121. PubMed ID: 31906656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media.
    Rudzick O; Mikhailov AS
    Phys Rev Lett; 2006 Jan; 96(1):018302. PubMed ID: 16486527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization of concave domains by traveling wave pinning.
    Bialecki S; Kazmierczak B; Lipniacki T
    PLoS One; 2017; 12(12):e0190372. PubMed ID: 29284045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of Turing patterns in the Brusselator model.
    Peña B; Pérez-García C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056213. PubMed ID: 11736060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude equations for reaction-diffusion systems with cross diffusion.
    Zemskov EP; Vanag VK; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036216. PubMed ID: 22060484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.