These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 24229277)

  • 1. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
    Das SP; Yoshimori A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043008. PubMed ID: 24229277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuating nonlinear hydrodynamics of flocking.
    Yadav SK; Das SP
    Phys Rev E; 2018 Mar; 97(3-1):032607. PubMed ID: 29776159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.
    Elizondo-Aguilera LF; Zubieta Rico PF; Ruiz-Estrada H; Alarcón-Waess O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052301. PubMed ID: 25493790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function.
    Izvekov S
    J Chem Phys; 2017 Mar; 146(12):124109. PubMed ID: 28388110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.
    Español P; Donev A
    J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic derivation of particle-based coarse-grained dynamics.
    Izvekov S
    J Chem Phys; 2013 Apr; 138(13):134106. PubMed ID: 23574207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.
    Archer AJ
    J Chem Phys; 2009 Jan; 130(1):014509. PubMed ID: 19140624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equation of motion for coarse-grained simulation based on microscopic description.
    Kinjo T; Hyodo SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051109. PubMed ID: 17677024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of projection operator method to coarse-grained dynamics with transient potential.
    Uneyama T
    Phys Rev E; 2022 Apr; 105(4-1):044117. PubMed ID: 35590667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven discovery of stochastic dynamical equations of collective motion.
    Nabeel A; Jadhav V; M DR; Sire C; Theraulaz G; Escobedo R; Iyer SK; Guttal V
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37369222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory.
    Krüger M; Solon A; Démery V; Rohwer CM; Dean DS
    J Chem Phys; 2018 Feb; 148(8):084503. PubMed ID: 29495772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid.
    Volkov VS; Leonov AI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051113. PubMed ID: 11735906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids.
    Lyubimov I; Guenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031801. PubMed ID: 22060394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field theories and exact stochastic equations for interacting particle systems.
    Andreanov A; Biroli G; Bouchaud JP; Lefèvre A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030101. PubMed ID: 17025576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic derivation of coarse-grained fluctuating hydrodynamic equations for many Brownian particles under nonequilibrium conditions.
    Nakamura T; Sasa S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031105. PubMed ID: 17025592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic description of particle systems with nonlocal density-dependent diffusivity.
    López C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):012102. PubMed ID: 16907141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element discretization of non-linear diffusion equations with thermal fluctuations.
    de la Torre JA; Español P; Donev A
    J Chem Phys; 2015 Mar; 142(9):094115. PubMed ID: 25747069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.