These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24229279)
41. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging. Teng Y; Liu Y; Jiang L; Song Y; Zhao J; Zhang Y; Wang D Magn Reson Imaging; 2016 Sep; 34(7):855-63. PubMed ID: 26968140 [TBL] [Abstract][Full Text] [Related]
42. Propagation and Entrapment of Hydrocarbons in Porous Media under Capillarity Controlled Phase-Alteration Conditions: A Visual Microfluidics Analysis. Al-Kindi I; Babadagli T ACS Appl Mater Interfaces; 2021 Jun; 13(23):27612-27621. PubMed ID: 34096264 [TBL] [Abstract][Full Text] [Related]
43. Transition from creeping via viscous-inertial to turbulent flow in fixed beds. Hlushkou D; Tallarek U J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240 [TBL] [Abstract][Full Text] [Related]
44. Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium. Alhosani A; Scanziani A; Lin Q; Selem A; Pan Z; Blunt MJ; Bijeljic B Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200671. PubMed ID: 33402876 [TBL] [Abstract][Full Text] [Related]
45. Strong influence of geometrical heterogeneity on drainage in porous media. Romano M; Chabert M; Cuenca A; Bodiguel H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):065302. PubMed ID: 22304143 [TBL] [Abstract][Full Text] [Related]
46. A level set method for determining critical curvatures for drainage and imbibition. Prodanović M; Bryant SL J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812 [TBL] [Abstract][Full Text] [Related]
47. The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method. Sweijen T; Nikooee E; Hassanizadeh SM; Chareyre B Transp Porous Media; 2016; 113():207-226. PubMed ID: 27471335 [TBL] [Abstract][Full Text] [Related]
48. Drainage in two-dimensional porous media: from capillary fingering to viscous flow. Cottin C; Bodiguel H; Colin A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046315. PubMed ID: 21230398 [TBL] [Abstract][Full Text] [Related]
49. Pore-scale network model for three-phase flow in mixed-wet porous media. van Dijke MI; Sorbie KS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046302. PubMed ID: 12443317 [TBL] [Abstract][Full Text] [Related]
50. Time-resolved synchrotron X-ray micro-tomography datasets of drainage and imbibition in carbonate rocks. Singh K; Menke H; Andrew M; Rau C; Bijeljic B; Blunt MJ Sci Data; 2018 Dec; 5():180265. PubMed ID: 30531856 [TBL] [Abstract][Full Text] [Related]
51. Interfacial pH-gradient induced micro-capillary filling with the aid of transverse electrodes arrays in presence of electrical double layer effects. Jain A; Chakraborty S Anal Chim Acta; 2010 Feb; 659(1-2):1-8. PubMed ID: 20103100 [TBL] [Abstract][Full Text] [Related]
52. Capillary climb dynamics in the limits of prevailing capillary and gravity force. Bijeljic B; Markicevic B; Navaz HK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056310. PubMed ID: 21728650 [TBL] [Abstract][Full Text] [Related]
54. Influence of buoyancy on drainage of a fractal porous medium. Huinink HP; Michels MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046301. PubMed ID: 12443316 [TBL] [Abstract][Full Text] [Related]
55. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions. Rabbani HS; Joekar-Niasar V; Pak T; Shokri N Sci Rep; 2017 Jul; 7(1):4584. PubMed ID: 28676665 [TBL] [Abstract][Full Text] [Related]
56. Large-scale effects on resistivity index of porous media. Aggelopoulos C; Klepetsanis P; Theodoropoulou MA; Pomoni K; Tsakiroglou CD J Contam Hydrol; 2005 May; 77(4):299-323. PubMed ID: 15854721 [TBL] [Abstract][Full Text] [Related]
57. Quantification of Uncertainty and Best Practice in Computing Interfacial Curvature from Complex Pore Space Images. Akai T; Lin Q; Alhosani A; Bijeljic B; Blunt MJ Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277221 [TBL] [Abstract][Full Text] [Related]
58. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
59. Hyperbolic regions in flows through three-dimensional pore structures. Hyman JD; Winter CL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063014. PubMed ID: 24483564 [TBL] [Abstract][Full Text] [Related]
60. Two-phase fluid flow in geometric packing. Paiva AS; Oliveira RS; Andrade RF Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2056):. PubMed ID: 26527816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]