These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 24229280)
1. Rayleigh wave scattering from sessile droplets. Quintero R; Simonetti F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043011. PubMed ID: 24229280 [TBL] [Abstract][Full Text] [Related]
2. Rayleigh wave scattering from a vertical edge of isotropic substrates. Darinskii AN; Weihnacht M; Schmidt H Ultrasonics; 2014 Sep; 54(7):1999-2005. PubMed ID: 24929564 [TBL] [Abstract][Full Text] [Related]
3. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets. Alghane M; Chen BX; Fu YQ; Li Y; Desmulliez MP; Mohammed MI; Walton AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056304. PubMed ID: 23214873 [TBL] [Abstract][Full Text] [Related]
7. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Fan Z; Jiang W; Cai M; Wright WM Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105 [TBL] [Abstract][Full Text] [Related]
8. Pulsed Rayleigh wave scattered at a surface crack. Jian X; Dixon S; Guo N; Edwards RS; Potter M Ultrasonics; 2006 Dec; 44 Suppl 1():e1131-4. PubMed ID: 16797641 [TBL] [Abstract][Full Text] [Related]
9. Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications. Wong KS; Lee L; Hung YM; Yeo LY; Tan MK Anal Chem; 2019 Oct; 91(19):12358-12368. PubMed ID: 31500406 [TBL] [Abstract][Full Text] [Related]
10. On the reflection of coupled Rayleigh-like waves at surface defects in plates. Masserey B; Fromme P J Acoust Soc Am; 2008 Jan; 123(1):88-98. PubMed ID: 18177141 [TBL] [Abstract][Full Text] [Related]
11. Obliquely incident ultrasonic wave propagation in a fluid-solid configuration and solid velocity measurements. Ji Y; Wang H; Yang G; Bi Q Ultrasonics; 2024 Sep; 143():107428. PubMed ID: 39121794 [TBL] [Abstract][Full Text] [Related]
12. Simulations of surface acoustic wave interactions on a sessile droplet using a three-dimensional multiphase lattice Boltzmann model. Burnside SB; Pasieczynski K; Zarareh A; Mehmood M; Fu YQ; Chen B Phys Rev E; 2021 Oct; 104(4-2):045301. PubMed ID: 34781429 [TBL] [Abstract][Full Text] [Related]
13. Study of Rayleigh waves interaction with a spherical ball in contact with a plane surface for the development of new NDT method for ball bearings. Bouzzit A; Martinez L; Arciniegas A; Hebaz SE; Wilkie-Chancellier N Ultrasonics; 2024 Jan; 136():107156. PubMed ID: 37683365 [TBL] [Abstract][Full Text] [Related]
14. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices. Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434 [TBL] [Abstract][Full Text] [Related]
15. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves. Declercq NF Ultrasonics; 2014 Feb; 54(2):609-13. PubMed ID: 24079915 [TBL] [Abstract][Full Text] [Related]
16. Surface Crack Monitoring by Rayleigh Waves with a Piezoelectric-Polymer-Film Ultrasonic Transducer Array. Li X; Wong VK; Yousry YM; Lim DBK; Christopher Subhodayam PT; Yao K; Feng L; Qian X; Fan Z Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904868 [TBL] [Abstract][Full Text] [Related]
17. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271 [TBL] [Abstract][Full Text] [Related]
18. Manipulation of cancer cells in a sessile droplet Nam H; Sung HJ; Park J; Jeon JS Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225 [TBL] [Abstract][Full Text] [Related]
19. Scholte-Stoneley waves on an immersed solid dihedral: generation, propagation and scattering effects. Lamkanfi E; Declercq NF; Van Paepegem W; Degrieck J Ultrasonics; 2014 Aug; 54(6):1685-91. PubMed ID: 24650686 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. Ali M; Park J Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]