These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 24229287)
1. Self-collimated axial jet seeds from thin accretion disks. Tirabassi G; Montani G; Carlevaro N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043101. PubMed ID: 24229287 [TBL] [Abstract][Full Text] [Related]
2. Direct detection of a magnetic field in the innermost regions of an accretion disk. Donati JF; Paletou F; Bouvier J; Ferreira J Nature; 2005 Nov; 438(7067):466-9. PubMed ID: 16306985 [TBL] [Abstract][Full Text] [Related]
3. Emergence of high peaks in the axial velocity for an ideal magnetohydrodynamic disk configuration. Montani G; Carlevaro N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):025402. PubMed ID: 20866868 [TBL] [Abstract][Full Text] [Related]
4. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst. Marscher AP; Jorstad SG; D'Arcangelo FD; Smith PS; Williams GG; Larionov VM; Oh H; Olmstead AR; Aller MF; Aller HD; McHardy IM; Lähteenmäki A; Tornikoski M; Valtaoja E; Hagen-Thorn VA; Kopatskaya EN; Gear WK; Tosti G; Kurtanidze O; Nikolashvili M; Sigua L; Miller HR; Ryle WT Nature; 2008 Apr; 452(7190):966-9. PubMed ID: 18432239 [TBL] [Abstract][Full Text] [Related]
5. Jet-launching structure resolved near the supermassive black hole in M87. Doeleman SS; Fish VL; Schenck DE; Beaudoin C; Blundell R; Bower GC; Broderick AE; Chamberlin R; Freund R; Friberg P; Gurwell MA; Ho PT; Honma M; Inoue M; Krichbaum TP; Lamb J; Loeb A; Lonsdale C; Marrone DP; Moran JM; Oyama T; Plambeck R; Primiani RA; Rogers AE; Smythe DL; SooHoo J; Strittmatter P; Tilanus RP; Titus M; Weintroub J; Wright M; Young KH; Ziurys LM Science; 2012 Oct; 338(6105):355-8. PubMed ID: 23019611 [TBL] [Abstract][Full Text] [Related]
6. Modeling the inner part of the jet in M87: Confronting jet morphology with theory. Yang H; Yuan F; Li H; Mizuno Y; Guo F; Lu R; Ho LC; Lin X; Zdziarski AA; Wang J Sci Adv; 2024 Mar; 10(12):eadn3544. PubMed ID: 38517970 [TBL] [Abstract][Full Text] [Related]
7. Crystalline structure of accretion disks: features of a global model. Montani G; Benini R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026406. PubMed ID: 21929119 [TBL] [Abstract][Full Text] [Related]
8. Nonstationary magnetic microstructures in stellar thin accretion disks. Montani G; Petitta J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053111. PubMed ID: 23767647 [TBL] [Abstract][Full Text] [Related]
9. Angular momentum transport in thin accretion disks and intermittent accretion. Coppi B; Coppi PS Phys Rev Lett; 2001 Jul; 87(5):051101. PubMed ID: 11497756 [TBL] [Abstract][Full Text] [Related]
10. A magnetically collimated jet from an evolved star. Vlemmings WH; Diamond PJ; Imai H Nature; 2006 Mar; 440(7080):58-60. PubMed ID: 16511488 [TBL] [Abstract][Full Text] [Related]
11. A collimated, high-speed outflow from the dying star V Hydrae. Sahai R; Morris M; Knapp GR; Young K; Barnbaum C Nature; 2003 Nov; 426(6964):261-4. PubMed ID: 14628044 [TBL] [Abstract][Full Text] [Related]
12. Cross-correlation-aided transport in stochastically driven accretion flows. Nath SK; Chattopadhyay AK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063014. PubMed ID: 25615194 [TBL] [Abstract][Full Text] [Related]
13. Origin of nonlinearity and plausible turbulence by hydromagnetic transient growth in accretion disks: Faster growth rate than magnetorotational instability. Nath SK; Mukhopadhyay B Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023005. PubMed ID: 26382501 [TBL] [Abstract][Full Text] [Related]
14. The parsec-scale jet in M87. Biretta JA; Junor W Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11364-7. PubMed ID: 11607598 [TBL] [Abstract][Full Text] [Related]
15. A symmetrically pulsed jet of gas from an invisible protostar in Orion. Zinnecker H; McCaughrean MJ; Rayner JT Nature; 1998 Aug; 394(6696):862-5. PubMed ID: 9732868 [TBL] [Abstract][Full Text] [Related]
16. Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135-136. Chrysostomou A; Lucas PW; Hough JH Nature; 2007 Nov; 450(7166):71-3. PubMed ID: 17972878 [TBL] [Abstract][Full Text] [Related]
17. Symmetry transforms for ideal magnetohydrodynamics equilibria. Bogoyavlenskij OI Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056410. PubMed ID: 12513610 [TBL] [Abstract][Full Text] [Related]
18. Magnetized laboratory plasma jets: experiment and simulation. Schrafel P; Bell K; Greenly J; Seyler C; Kusse B Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013110. PubMed ID: 25679726 [TBL] [Abstract][Full Text] [Related]
19. Alignment of magnetized accretion disks and relativistic jets with spinning black holes. McKinney JC; Tchekhovskoy A; Blandford RD Science; 2013 Jan; 339(6115):49-52. PubMed ID: 23160958 [TBL] [Abstract][Full Text] [Related]
20. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole. Martí-Vidal I; Muller S; Vlemmings W; Horellou C; Aalto S Science; 2015 Apr; 348(6232):311-4. PubMed ID: 25883352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]