These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24229294)

  • 1. Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.
    Ling L; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043201. PubMed ID: 24229294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.
    Liu TY; Chiu TL; Clarkson PA; Chow KW
    Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order rogue waves in vector nonlinear Schrödinger equations.
    Ling L; Guo B; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041201. PubMed ID: 24827185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.
    Zhong WP; Belić M; Zhang Y
    Opt Express; 2015 Feb; 23(3):3708-16. PubMed ID: 25836223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable parabolic-cylinder optical rogue wave.
    Zhong WP; Chen L; Belić M; Petrović N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043201. PubMed ID: 25375612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 11. Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation.
    Zhao LC; Liu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013201. PubMed ID: 23410451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rogue-wave pattern transition induced by relative frequency.
    Zhao LC; Xin GG; Yang ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022918. PubMed ID: 25215810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
    Loomba S; Kaur H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062903. PubMed ID: 24483527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.
    Zhang G; Yan Z; Wen XY
    Proc Math Phys Eng Sci; 2017 Jul; 473(2203):20170243. PubMed ID: 28804266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable optical rogue waves via nonlinearity management.
    Yang Z; Zhong WP; Belić M; Zhang Y
    Opt Express; 2018 Mar; 26(6):7587-7597. PubMed ID: 29609312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Phys Rev E; 2021 Jun; 103(6-1):062206. PubMed ID: 34271656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.
    Sun WR; Tian B; Jiang Y; Zhen HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023205. PubMed ID: 25768624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super chirped rogue waves in optical fibers.
    Chen S; Zhou Y; Bu L; Baronio F; Soto-Crespo JM; Mihalache D
    Opt Express; 2019 Apr; 27(8):11370-11384. PubMed ID: 31052982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.