These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 24229375)
1. The effect of uniaxial strain on graphene nanoribbon carrier statistic. Johari Z; Ismail R Nanoscale Res Lett; 2013 Nov; 8(1):479. PubMed ID: 24229375 [TBL] [Abstract][Full Text] [Related]
2. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain. Kang ES; Ismail R Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871 [TBL] [Abstract][Full Text] [Related]
3. Phonon-drag thermopower in an armchair graphene nanoribbon. Bhargavi KS; Kubakaddi SS J Phys Condens Matter; 2011 Jul; 23(27):275303. PubMed ID: 21697579 [TBL] [Abstract][Full Text] [Related]
4. A carrier velocity model for electrical detection of gas molecules. Hosseingholi Pourasl A; Ariffin SHS; Ahmadi MT; Ismail R; Gharaei N Beilstein J Nanotechnol; 2019; 10():644-653. PubMed ID: 30931206 [TBL] [Abstract][Full Text] [Related]
5. Thermoelectric properties of armchair graphene nanoribbons with array characteristics. Kuo DMT RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995 [TBL] [Abstract][Full Text] [Related]
6. Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties. Liu H; Kondo H; Ohno T Nanoscale Res Lett; 2016 Dec; 11(1):456. PubMed ID: 27739053 [TBL] [Abstract][Full Text] [Related]
8. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges. Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615 [TBL] [Abstract][Full Text] [Related]
9. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. Li XF; Wang LL; Chen KQ; Luo Y J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831 [TBL] [Abstract][Full Text] [Related]
10. Strain and screening effects on field emission properties of armchair graphene nanoribbon arrays: a first-principles study. Hu H; Loh SM; Leung TC; Lin MC RSC Adv; 2018 Jun; 8(40):22625-22634. PubMed ID: 35539699 [TBL] [Abstract][Full Text] [Related]
11. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors. Kliros GS Nanoscale Res Lett; 2014 Feb; 9(1):65. PubMed ID: 24506842 [TBL] [Abstract][Full Text] [Related]
12. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling. Wakai T; Sakamoto S; Tomiya M J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774 [TBL] [Abstract][Full Text] [Related]
13. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. Sanaeepur M Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399 [TBL] [Abstract][Full Text] [Related]
14. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Zhou B; Chen X; Zhou B; Ding KH; Zhou G J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476 [TBL] [Abstract][Full Text] [Related]
15. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices. Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350 [TBL] [Abstract][Full Text] [Related]
16. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Li XF; Lian KY; Qiu Q; Luo Y Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635 [TBL] [Abstract][Full Text] [Related]
17. Inverse relationship between carrier mobility and bandgap in graphene. Wang J; Zhao R; Yang M; Liu Z; Liu Z J Chem Phys; 2013 Feb; 138(8):084701. PubMed ID: 23464166 [TBL] [Abstract][Full Text] [Related]
18. On-surface synthesis of rylene-type graphene nanoribbons. Zhang H; Lin H; Sun K; Chen L; Zagranyarski Y; Aghdassi N; Duhm S; Li Q; Zhong D; Li Y; Müllen K; Fuchs H; Chi L J Am Chem Soc; 2015 Apr; 137(12):4022-5. PubMed ID: 25775004 [TBL] [Abstract][Full Text] [Related]
19. Strain dependence of the heat transport properties of graphene nanoribbons. Yeo PS; Loh KP; Gan CK Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343 [TBL] [Abstract][Full Text] [Related]
20. Quantum Dots in Graphene Nanoribbons. Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]