These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
773 related articles for article (PubMed ID: 2423089)
41. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related]
42. Cyclic 3',5'-nucleotide diesterases in dynamics of cAMP and cGMP in rat collecting duct cells. Yamaki M; McIntyre S; Rassier ME; Schwartz JH; Dousa TP Am J Physiol; 1992 Jun; 262(6 Pt 2):F957-64. PubMed ID: 1320333 [TBL] [Abstract][Full Text] [Related]
43. Effects of SK&F 94120, an inhibitor of cyclic nucleotide phosphodiesterase type III, on human platelets. Simpson AW; Reeves ML; Rink TJ Biochem Pharmacol; 1988 Jun; 37(12):2315-20. PubMed ID: 2455518 [TBL] [Abstract][Full Text] [Related]
44. Lack of effect of zaprinast on methacholine-induced contraction and inositol 1,4,5-trisphosphate accumulation in bovine tracheal smooth muscle. Chilvers ER; Giembycz MA; Challiss RA; Barnes BJ; Nahorski SR Br J Pharmacol; 1991 May; 103(1):1119-25. PubMed ID: 1652339 [TBL] [Abstract][Full Text] [Related]
46. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3. Beierwaltes WH Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1376-81. PubMed ID: 16449359 [TBL] [Abstract][Full Text] [Related]
47. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Weishaar RE; Burrows SD; Kobylarz DC; Quade MM; Evans DB Biochem Pharmacol; 1986 Mar; 35(5):787-800. PubMed ID: 3006691 [TBL] [Abstract][Full Text] [Related]
48. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. de Vente J; Markerink-van Ittersum M; Vles JS J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445 [TBL] [Abstract][Full Text] [Related]
49. Pharmacological inhibition of calmodulin-sensitive phosphodiesterases. Ilien B; Ruckstuhl M; Landry Y J Pharmacol; 1982; 13(2):307-16. PubMed ID: 6285085 [TBL] [Abstract][Full Text] [Related]
50. Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases. Guo L; Luo L; Ju R; Chen C; Zhu L; Li J; Yu X; Ye C; Zhang D Eur J Pharmacol; 2015 Jan; 746():14-21. PubMed ID: 25446933 [TBL] [Abstract][Full Text] [Related]
51. The identification and characterization of two cyclic nucleotide phosphodiesterases from bovine adrenal medulla. Sabatine JM; Coffee CJ Arch Biochem Biophys; 1986 Aug; 249(1):95-105. PubMed ID: 3017224 [TBL] [Abstract][Full Text] [Related]
52. Effect of 3-isobutyl-1-methylxanthine and zaprinast on non-adrenergic non-cholinergic relaxation in the rat gastric fundus. Barbier AJ; Lefebvre RA Eur J Pharmacol; 1992 Jan; 210(3):315-23. PubMed ID: 1377130 [TBL] [Abstract][Full Text] [Related]
53. A photoaffinity probe covalently modifies the catalytic site of the cGMP-binding cGMP-specific phosphodiesterase (PDE-5). Corbin JD; Beasley A; Turko IV; Haik TL; Mangum KA; Wells JN; Francis SH; Sekhar KR Cell Biochem Biophys; 1998; 29(1-2):145-57. PubMed ID: 9631243 [TBL] [Abstract][Full Text] [Related]
54. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Bellamy TC; Garthwaite J Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024 [TBL] [Abstract][Full Text] [Related]
55. [Effect of several hormones on cyclic 3',5'-nucleotide phosphodiesterase in rat kidneys]. Iwase K Nihon Naibunpi Gakkai Zasshi; 1983 Oct; 59(10):1678-91. PubMed ID: 6319206 [TBL] [Abstract][Full Text] [Related]
56. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism. Zhu WH; Majluf-Cruz A; Omburo GA Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035 [TBL] [Abstract][Full Text] [Related]
57. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Shahid M; Nicholson CD Naunyn Schmiedebergs Arch Pharmacol; 1990 Dec; 342(6):698-705. PubMed ID: 1710786 [TBL] [Abstract][Full Text] [Related]
58. Characterization of cyclic nucleotide phosphodiesterase isoenzymes in the human ureter and their functional role in vitro. Taher A; Schulz-Knappe P; Meyer M; Truss M; Forssmann WG; Stief CG; Jonas U World J Urol; 1994; 12(5):286-91. PubMed ID: 7866426 [TBL] [Abstract][Full Text] [Related]
59. Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3',5'-cyclic monophosphate. von Bülow V; Rink L; Haase H J Immunol; 2005 Oct; 175(7):4697-705. PubMed ID: 16177117 [TBL] [Abstract][Full Text] [Related]
60. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]