These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24230967)
1. The influence of air content in water on ultrasonic cavitation field. Liu L; Yang Y; Liu P; Tan W Ultrason Sonochem; 2014 Mar; 21(2):566-71. PubMed ID: 24230967 [TBL] [Abstract][Full Text] [Related]
2. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning. Kang BK; Kim MS; Park JG Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613 [TBL] [Abstract][Full Text] [Related]
3. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency. Liu L; Wen J; Yang Y; Tan W Ultrason Sonochem; 2013 Mar; 20(2):696-702. PubMed ID: 23168078 [TBL] [Abstract][Full Text] [Related]
5. Cavitation intensity of water under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2014 Jan; 21(1):354-9. PubMed ID: 23911265 [TBL] [Abstract][Full Text] [Related]
6. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related]
7. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
8. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields. Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075 [TBL] [Abstract][Full Text] [Related]
9. Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor. Gielen B; Marchal S; Jordens J; Thomassen LC; Braeken L; Van Gerven T Ultrason Sonochem; 2016 Jul; 31():463-72. PubMed ID: 26964973 [TBL] [Abstract][Full Text] [Related]
10. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves. Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068 [TBL] [Abstract][Full Text] [Related]
11. [Effect of ultrasonic cavitation on ICP source radiation intensity]. Chen JZ; Wen N; Sun J; Li X; Yang BZ Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1338-41. PubMed ID: 23905347 [TBL] [Abstract][Full Text] [Related]
12. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts. Xu WW; Tzanakis I; Srirangam P; Mirihanage WU; Eskin DG; Bodey AJ; Lee PD Ultrason Sonochem; 2016 Jul; 31():355-61. PubMed ID: 26964960 [TBL] [Abstract][Full Text] [Related]
13. Cavitation field analysis for an increased efficiency of ultrasonic sludge pre-treatment using a novel hydrophone system. Bandelin J; Lippert T; Drewes JE; Koch K Ultrason Sonochem; 2018 Apr; 42():672-678. PubMed ID: 29429716 [TBL] [Abstract][Full Text] [Related]
14. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components. Tan WX; Tan KW; Tan KL Ultrasonics; 2022 Dec; 126():106829. PubMed ID: 35998399 [TBL] [Abstract][Full Text] [Related]
15. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results. Jüschke M; Koch C Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472 [TBL] [Abstract][Full Text] [Related]
16. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Cao H; Wan M; Qiao Y; Zhang S; Li R Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening. Bai F; Long Y; Saalbach KA; Twiefel J Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727 [TBL] [Abstract][Full Text] [Related]
18. Bubble dynamics and cavitation intensity in milli-scale channels under an ultrasonic horn. Tan KL; Yeo SH Ultrason Sonochem; 2019 Nov; 58():104666. PubMed ID: 31450291 [TBL] [Abstract][Full Text] [Related]
19. Dissolved gas and ultrasonic cavitation--a review. Rooze J; Rebrov EV; Schouten JC; Keurentjes JT Ultrason Sonochem; 2013 Jan; 20(1):1-11. PubMed ID: 22705074 [TBL] [Abstract][Full Text] [Related]
20. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound. Ding T; Zhang S; Fu Q; Xu Z; Wan M Ultrasonics; 2014 Jan; 54(1):147-55. PubMed ID: 23673346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]