These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24231078)

  • 1. Slip flow of diverse liquids on robust superomniphobic surfaces.
    Wu Y; Cai M; Li Z; Song X; Wang H; Pei X; Zhou F
    J Colloid Interface Sci; 2014 Jan; 414():9-13. PubMed ID: 24231078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO
    Pendurthi A; Movafaghi S; Wang W; Shadman S; Yalin AP; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25656-25661. PubMed ID: 28731320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids.
    Liu TL; Kim CJ
    Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Tension and Viscosity Dependence of Slip Length over Irregularly Structured Superhydrophobic Surfaces.
    Zhang L; Mehanna YA; Crick CR; Poole RJ
    Langmuir; 2022 Oct; 38(39):11873-11881. PubMed ID: 36125335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.
    Jing D; Bhushan B
    Langmuir; 2013 Nov; 29(47):14691-700. PubMed ID: 24168076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations.
    Lee T; Charrault E; Neto C
    Adv Colloid Interface Sci; 2014 Aug; 210():21-38. PubMed ID: 24630344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface.
    Choi CH; Kim CJ
    Phys Rev Lett; 2006 Feb; 96(6):066001. PubMed ID: 16606011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.
    Tanvir Ahmmed KM; Kietzig AM
    Soft Matter; 2016 Jun; 12(22):4912-22. PubMed ID: 27146256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal slip for liquids at rough solid surfaces.
    Zhang C; Chen Y; Peterson GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062407. PubMed ID: 25019794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance.
    Roach P; McHale G; Evans CR; Shirtcliffe NJ; Newton MI
    Langmuir; 2007 Sep; 23(19):9823-30. PubMed ID: 17705513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid slip on a nanostructured surface.
    Lee DJ; Cho KY; Jang S; Song YS; Youn JR
    Langmuir; 2012 Jul; 28(28):10488-94. PubMed ID: 22717057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes.
    Rangel TC; Michels AF; Horowitz F; Weibel DE
    Langmuir; 2015 Mar; 31(11):3465-72. PubMed ID: 25714008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces.
    Cho JH; Law BM; Rieutord F
    Phys Rev Lett; 2004 Apr; 92(16):166102. PubMed ID: 15169244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding droplets on superomniphobic zinc oxide nanostructures.
    Perry G; Coffinier Y; Thomy V; Boukherroub R
    Langmuir; 2012 Jan; 28(1):389-95. PubMed ID: 22053956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of flow on longevity of superhydrophobic coatings.
    Samaha MA; Tafreshi HV; Gad-el-Hak M
    Langmuir; 2012 Jun; 28(25):9759-66. PubMed ID: 22639940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.