These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 24231110)
1. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Siragusa S; De Angelis M; Calasso M; Campanella D; Minervini F; Di Cagno R; Gobbetti M J Proteomics; 2014 Jan; 96():366-80. PubMed ID: 24231110 [TBL] [Abstract][Full Text] [Related]
2. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Bove CG; De Angelis M; Gatti M; Calasso M; Neviani E; Gobbetti M Proteomics; 2012 Nov; 12(21):3206-18. PubMed ID: 22965658 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Plumed-Ferrer C; Koistinen KM; Tolonen TL; Lehesranta SJ; Kärenlampi SO; Mäkimattila E; Joutsjoki V; Virtanen V; von Wright A Appl Environ Microbiol; 2008 Sep; 74(17):5349-58. PubMed ID: 18567686 [TBL] [Abstract][Full Text] [Related]
4. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Filannino P; Cardinali G; Rizzello CG; Buchin S; De Angelis M; Gobbetti M; Di Cagno R Appl Environ Microbiol; 2014 Apr; 80(7):2206-15. PubMed ID: 24487533 [TBL] [Abstract][Full Text] [Related]
5. Proteome analysis of Lactobacillus plantarum strain under cheese-like conditions. Wu Z; Wang P; He J; Pan D; Zeng X; Cao J J Proteomics; 2016 Sep; 146():165-71. PubMed ID: 27418433 [TBL] [Abstract][Full Text] [Related]
6. Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Minervini F; De Angelis M; Di Cagno R; Pinto D; Siragusa S; Rizzello CG; Gobbetti M Food Microbiol; 2010 Oct; 27(7):897-908. PubMed ID: 20688231 [TBL] [Abstract][Full Text] [Related]
7. Design of a low-cost culture medium based in whey permeate for biomass production of enological Lactobacillus plantarum strains. Cerdeira V; Bravo-Ferrada BM; Semorile L; Tymczyszyn E Biotechnol Prog; 2019 May; 35(3):e2791. PubMed ID: 30816027 [TBL] [Abstract][Full Text] [Related]
8. Effects of the peptide pheromone plantaricin A and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400. Calasso M; Di Cagno R; De Angelis M; Campanella D; Minervini F; Gobbetti M Appl Environ Microbiol; 2013 Apr; 79(8):2657-69. PubMed ID: 23396346 [TBL] [Abstract][Full Text] [Related]
9. Two-step production of D-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Tsuge Y; Kawaguchi H; Sasaki K; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2014 Jun; 98(11):4911-8. PubMed ID: 24562327 [TBL] [Abstract][Full Text] [Related]
10. Genomic resequencing combined with quantitative proteomic analyses elucidate the survival mechanisms of Lactobacillus plantarum P-8 in a long-term glucose-limited experiment. He Q; Cao C; Hui W; Yu J; Zhang H; Zhang W J Proteomics; 2018 Mar; 176():37-45. PubMed ID: 29414317 [TBL] [Abstract][Full Text] [Related]
11. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Buntin N; Hongpattarakere T; Ritari J; Douillard FP; Paulin L; Boeren S; Shetty SA; de Vos WM Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27815279 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteomic analysis of three Lactobacillus plantarum strains under salt stress by iTRAQ. Luo X; Li M; Zhang H; Yan D; Ji S; Wu R; Chen Y J Sci Food Agric; 2021 Jun; 101(8):3457-3471. PubMed ID: 33270231 [TBL] [Abstract][Full Text] [Related]
13. Calcium Determines Yu AO; Wei L; Marco ML Appl Environ Microbiol; 2022 Aug; 88(15):e0066622. PubMed ID: 35852360 [TBL] [Abstract][Full Text] [Related]
14. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products. Kung HF; Lee YC; Huang YL; Huang YR; Su YC; Tsai YH J Food Prot; 2017 Oct; 80(10):1682-1688. PubMed ID: 28885051 [TBL] [Abstract][Full Text] [Related]
15. Stability assessment and improvement of a Lactobacillus plantarum mutant with low post-fermentation acidification characteristics. Chuah LO; Mao Y J Dairy Sci; 2020 Sep; 103(9):7898-7907. PubMed ID: 32622602 [TBL] [Abstract][Full Text] [Related]
16. Functional analysis of the role of CcpA in Lactobacillus plantarum grown on fructooligosaccharides or glucose: a transcriptomic perspective. Lu Y; Song S; Tian H; Yu H; Zhao J; Chen C Microb Cell Fact; 2018 Dec; 17(1):201. PubMed ID: 30593274 [TBL] [Abstract][Full Text] [Related]
17. Cold-Stress Response of Probiotic Liu S; Ma Y; Zheng Y; Zhao W; Zhao X; Luo T; Zhang J; Yang Z J Microbiol Biotechnol; 2020 Feb; 30(2):187-195. PubMed ID: 31752066 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomic analyses for elucidating metabolic changes during EPS production under different fermentation temperatures by Lactobacillus plantarum Q823. Vera Pingitore E; Pessione A; Fontana C; Mazzoli R; Pessione E Int J Food Microbiol; 2016 Dec; 238():96-102. PubMed ID: 27611800 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Shi Y; Zhao J; Kellingray L; Zhang H; Narbad A; Zhai Q; Chen W Food Res Int; 2019 May; 119():813-821. PubMed ID: 30884720 [TBL] [Abstract][Full Text] [Related]
20. Characterization of robust Lactobacillus plantarum and Lactobacillus pentosus starter cultures for environmentally friendly low-salt cucumber fermentations. Anekella K; Pérez-Díaz IM J Food Sci; 2020 Oct; 85(10):3487-3497. PubMed ID: 32893884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]