These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 24231262)
1. Synthesis and characterization of cellulose 3,5-dimethylphenylcarbamate silica hybrid spheres for enantioseparation of chiral β-blockers. Weng X; Bao Z; Xing H; Zhang Z; Yang Q; Su B; Yang Y; Ren Q J Chromatogr A; 2013 Dec; 1321():38-47. PubMed ID: 24231262 [TBL] [Abstract][Full Text] [Related]
2. Organic-inorganic hybrid materials for efficient enantioseparation using cellulose 3,5-dimethylphenylcarbamate and tetraethyl orthosilicate. Ikai T; Yamamoto C; Kamigaito M; Okamoto Y Chem Asian J; 2008 Sep; 3(8-9):1494-9. PubMed ID: 18506867 [TBL] [Abstract][Full Text] [Related]
3. Nanocellulose 3, 5-Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance. Zhang X; Wang L; Dong S; Zhang X; Wu Q; Zhao L; Shi Y Chirality; 2016 May; 28(5):376-81. PubMed ID: 26949227 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an ionic liquid and its chiral separation efficiency as stationary phase. Liu R; Zhang Y; Bai L; Huang M; Chen J; Zhang Y Int J Mol Sci; 2014 Apr; 15(4):6161-8. PubMed ID: 24733066 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation. Shen J; Wang F; Bi W; Liu B; Liu S; Okamoto Y J Chromatogr A; 2018 Oct; 1572():54-61. PubMed ID: 30146373 [TBL] [Abstract][Full Text] [Related]
6. Effects of backbone and side chain on the molecular environments of chiral cavities in polysaccharide-based biopolymers. Kasat RB; Wang NH; Franses EI Biomacromolecules; 2007 May; 8(5):1676-85. PubMed ID: 17439279 [TBL] [Abstract][Full Text] [Related]
7. Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives on silica gel. Kubota T; Yamamoto C; Okamoto Y Chirality; 2003 Jan; 15(1):77-82. PubMed ID: 12467047 [TBL] [Abstract][Full Text] [Related]
8. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Ali I; Aboul-Enein HY Biomed Chromatogr; 2003; 17(2-3):113-7. PubMed ID: 12717799 [TBL] [Abstract][Full Text] [Related]
9. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Peng L; Jayapalan S; Chankvetadze B; Farkas T J Chromatogr A; 2010 Oct; 1217(44):6942-55. PubMed ID: 20863505 [TBL] [Abstract][Full Text] [Related]
10. Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography. Kumar AP; Park JH J Chromatogr A; 2011 Aug; 1218(31):5369-73. PubMed ID: 21705007 [TBL] [Abstract][Full Text] [Related]
11. Enantioseparation Using Cellulose Tris(3,5-dimethylphenylcarbamate) as Chiral Stationary Phase for HPLC: Influence of Molecular Weight of Cellulose. Okada Y; Yamamoto C; Kamigaito M; Gao Y; Shen J; Okamoto Y Molecules; 2016 Nov; 21(11):. PubMed ID: 27834832 [TBL] [Abstract][Full Text] [Related]
12. Effect of organic solvent, electrolyte salt and a loading of cellulose tris (3,5-dichlorophenyl-carbamate) on silica gel on enantioseparation characteristics in capillary electrochromatography. Chankvetadze B; Kartozia I; Breitkreutz J; Okamoto Y; Blaschke G Electrophoresis; 2001 Sep; 22(15):3327-34. PubMed ID: 11589297 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of cellulose phenylcarbamate onto silica gel via in termolecular polycondensation of triethoxysilyl groups introduced with (3-glycidoxypropyl)triethoxysilane. Tang S; Okamoto Y J Sep Sci; 2008 Oct; 31(18):3133-8. PubMed ID: 18773418 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of (S)-amino alcohol modified M41S as effective material for the enantioseparation of racemic compounds. Mayani VJ; Abdi SH; Kureshy RI; Khan NH; Agrawal S; Jasra RV J Chromatogr A; 2006 Dec; 1135(2):186-93. PubMed ID: 17055521 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the chiral recognition properties as well as the column performance of four chiral stationary phases based on cellulose (3,5-dimethylphenylcarbamate) by parallel HPLC and SFC. Nelander H; Andersson S; Ohlén K J Chromatogr A; 2011 Dec; 1218(52):9397-405. PubMed ID: 22119140 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of dendrimer-type chiral stationary phases based on the selector of (1S,2R)-(+)-2-amino-1,2-diphenylethanol derivate and their enantioseparation evaluation by HPLC. He BJ; Yin CQ; Li SR; Bai ZW Chirality; 2010 Jan; 22(1):69-76. PubMed ID: 19319988 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Yan YL; Guo D; Wu JL; Tang XH; Luo JJ; Li SQ; Fan J; Zheng SR; Zhang WG; Cai SL J Chromatogr A; 2022 Jul; 1675():463155. PubMed ID: 35635867 [TBL] [Abstract][Full Text] [Related]
19. Influence of vinyl monomers and temperature on immobilization of cellulose 3,5-dimethylphenylcarbamate onto silica gel as chiral stationary phases for high-performance liquid chromatography. Chen XM; Yamamoto C; Okamoto Y J Chromatogr A; 2006 Feb; 1104(1-2):62-8. PubMed ID: 16359692 [TBL] [Abstract][Full Text] [Related]
20. Comparative HPLC methods for β-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters. Morante-Zarcero S; Sierra I J Pharm Biomed Anal; 2012 Mar; 62():33-41. PubMed ID: 22264847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]