These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24231265)

  • 1. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.
    Mahmoud M; Parameswaran P; Torres CI; Rittmann BE
    Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.
    Choi J; Ahn Y
    Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.
    Ki D; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioresour Technol; 2015 Nov; 195():83-8. PubMed ID: 26159378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.
    Qin M; Molitor H; Brazil B; Novak JT; He Z
    Bioresour Technol; 2016 Jan; 200():485-92. PubMed ID: 26519701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation.
    Ganesh K; Jambeck JR
    Bioresour Technol; 2013 Jul; 139():383-7. PubMed ID: 23692849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.
    Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2016 Nov; 219():348-356. PubMed ID: 27501031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH.
    Li XM; Cheng KY; Wong JW
    Bioresour Technol; 2013 Dec; 149():452-8. PubMed ID: 24140849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation.
    Sosa-Hernández O; Popat SC; Parameswaran P; Alemán-Nava GS; Torres CI; Buitrón G; Parra-Saldívar R
    Bioresour Technol; 2016 Jan; 200():342-9. PubMed ID: 26512857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of evolving quality of landfill leachate on microbial fuel cell performance.
    Li S; Chen G
    Waste Manag Res; 2018 Jan; 36(1):59-67. PubMed ID: 29126378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.
    Dhar BR; Gao Y; Yeo H; Lee HS
    Bioresour Technol; 2013 Nov; 148():208-14. PubMed ID: 24047682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation.
    Lei Y; Shen Z; Huang R; Wang W
    Water Res; 2007 Jun; 41(11):2417-26. PubMed ID: 17434200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material.
    Özkaya B; Cetinkaya AY; Cakmakci M; Karadağ D; Sahinkaya E
    Bioprocess Biosyst Eng; 2013 Apr; 36(4):399-405. PubMed ID: 22903571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors.
    Liu Q; Zhang X; Yu L; Zhao A; Tai J; Liu J; Qian G; Xu ZP
    Bioresour Technol; 2011 May; 102(9):5411-7. PubMed ID: 21071216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-electrochemical post-treatment of anaerobically treated landfill leachate.
    Tugtas AE; Cavdar P; Calli B
    Bioresour Technol; 2013 Jan; 128():266-72. PubMed ID: 23196249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.
    Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP
    Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.