BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2423134)

  • 1. Characterization of the phosphorylatable myosin light chain in rat uterus.
    Csabina S; Mougios V; Bárány M; Bárány K
    Biochim Biophys Acta; 1986 Jun; 871(3):311-5. PubMed ID: 2423134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin light chain isoforms and their phosphorylation in arterial smooth muscle.
    Erdödi F; Bárány M; Bárány K
    Circ Res; 1987 Dec; 61(6):898-903. PubMed ID: 3315292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of myosin light chain phosphorylation in uterine and arterial smooth muscles.
    Csabina S; Bárány M; Bárány K
    Comp Biochem Physiol B; 1987; 87(2):271-7. PubMed ID: 3497770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate.
    Neufeld E; Goren HJ; Boland D
    Anal Biochem; 1989 Feb; 177(1):138-43. PubMed ID: 2472754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibodies and radioimmunoassays for phosphoserine, phosphothreonine and phosphotyrosine. Serologic specificities and levels of the phosphoamino acids in cytoplasmic fractions of rat tissues.
    Levine L; Gjika HB; Van Vunakis H
    J Immunol Methods; 1989 Nov; 124(2):239-49. PubMed ID: 2480980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for isoforms of the phosphorylatable myosin light chain in rat uterus.
    Bárány K; Csabina S; de Lanerolle P; Bárány M
    Biochim Biophys Acta; 1987 Feb; 911(3):369-71. PubMed ID: 3814610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phosphoamino acid analysis by 2-dimensional electrophoresis].
    Mitsui K; Iwashita S
    Seikagaku; 1990 Jun; 62(6):457-61. PubMed ID: 1698211
    [No Abstract]   [Full Text] [Related]  

  • 8. A rapid microdetermination of phosphoserine, phosphothreonine, and phosphotyrosine in proteins by automatic cation exchange on a conventional amino acid analyzer.
    Capony JP; Demaille JG
    Anal Biochem; 1983 Jan; 128(1):206-12. PubMed ID: 6189415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and rapid method of quantitative analysis of phosphoamino acids by high-performance liquid chromatography.
    Morrice N; Aitken A
    Anal Biochem; 1985 Jul; 148(1):207-12. PubMed ID: 2412465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical properties, isolation, and analysis of O-phosphates in proteins.
    Martensen TM
    Methods Enzymol; 1984; 107():3-23. PubMed ID: 6209530
    [No Abstract]   [Full Text] [Related]  

  • 11. Determination of [32P]phosphoamino acids in protein hydrolysates by isocratic anion-exchange high-performance liquid chromatography.
    McCroskey MC; Colca JR; Pearson JD
    J Chromatogr; 1988 Jun; 442():307-15. PubMed ID: 2458372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for nonradioactive methods in the localization of phosphorylated amino acids in proteins.
    Meyer HE; Eisermann B; Heber M; Hoffmann-Posorske E; Korte H; Weigt C; Wegner A; Hutton T; Donella-Deana A; Perich JW
    FASEB J; 1993 Jun; 7(9):776-82. PubMed ID: 7687226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the phosphoamino acid content of phosphoproteins.
    de Witte PA; Cuveele JF; Merlevede WJ; Agostinis PM
    J Pharm Biomed Anal; 1996 Jun; 14(8-10):1063-7. PubMed ID: 8818016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycogen synthase in rat adipocytes and skeletal muscle is phosphorylated on both serine and threonine.
    Hiken JF; Lawrence JC
    FEBS Lett; 1984 Sep; 175(1):55-8. PubMed ID: 6434347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of insulin receptor phosphorylation sites in intact rat liver cells by two-dimensional phosphopeptide mapping. Predominance of the tris-phosphorylated form of the kinase domain after stimulation by insulin.
    Issad T; Tavaré JM; Denton RM
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):15-21. PubMed ID: 1708233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of phosphoserine, phosphothreonine and phosphotyrosine in proteins of vesicular stomatitis virus.
    Clinton GM; Huang AS
    Virology; 1981 Jan; 108(2):510-4. PubMed ID: 6162272
    [No Abstract]   [Full Text] [Related]  

  • 17. Separation of phosphotyrosine, phosphoserine, and phosphothreonine by high-performance liquid chromatography.
    Ringer DP
    Methods Enzymol; 1991; 201():3-10. PubMed ID: 1719344
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential phosphorylation of a 57-KDa protein tyrosine kinase during egg activation.
    Kinsey WH
    Biochem Biophys Res Commun; 1995 Mar; 208(1):204-9. PubMed ID: 7534072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of two human neurochordins by mammalian casein kinase 1.
    Elizarov SM; Preobrazhensky AA
    Brain Res Mol Brain Res; 1993 Sep; 19(4):310-2. PubMed ID: 7694031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine and serine phosphorylation of dystrophin and the 58-kDa protein in the postsynaptic membrane of Torpedo electric organ.
    Wagner KR; Huganir RL
    J Neurochem; 1994 May; 62(5):1947-52. PubMed ID: 7512621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.