These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 24231424)

  • 1. Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions.
    Hart G; Leung BK; Balleine BW
    Neurobiol Learn Mem; 2014 Feb; 108():104-18. PubMed ID: 24231424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The integrative function of the basal ganglia in instrumental conditioning.
    Balleine BW; Liljeholm M; Ostlund SB
    Behav Brain Res; 2009 Apr; 199(1):43-52. PubMed ID: 19027797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions.
    Hart G; Bradfield LA; Fok SY; Chieng B; Balleine BW
    Curr Biol; 2018 Jul; 28(14):2218-2229.e7. PubMed ID: 30056856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action.
    Fisher SD; Ferguson LA; Bertran-Gonzalez J; Balleine BW
    Curr Biol; 2020 Nov; 30(22):4541-4546.e5. PubMed ID: 33007245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
    Hart G; Bradfield LA; Balleine BW
    J Neurosci; 2018 Jan; 38(5):1311-1322. PubMed ID: 29301872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions.
    Corbit LH; Leung BK; Balleine BW
    J Neurosci; 2013 Nov; 33(45):17682-90. PubMed ID: 24198361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Role Does Striatal Dopamine Play in Goal-directed Action?
    Hart G; Burton TJ; Balleine BW
    Neuroscience; 2024 May; 546():20-32. PubMed ID: 38521480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats.
    Shiflett MW; Brown RA; Balleine BW
    J Neurosci; 2010 Feb; 30(8):2951-9. PubMed ID: 20181592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum.
    Shan Q; Ge M; Christie MJ; Balleine BW
    J Neurosci; 2014 Jul; 34(28):9196-201. PubMed ID: 25009253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation.
    Shiflett MW; Balleine BW
    Eur J Neurosci; 2010 Nov; 32(10):1735-43. PubMed ID: 21044174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning.
    Peak J; Hart G; Balleine BW
    Eur J Neurosci; 2019 Mar; 49(5):658-671. PubMed ID: 29791051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatopallidal Pathway Distinctly Modulates Goal-Directed Valuation and Acquisition of Instrumental Behavior via Striatopallidal Output Projections.
    He Y; Li Y; Pu Z; Chen M; Gao Y; Chen L; Ruan Y; Pan X; Zhou Y; Ge Y; Zhou J; Zheng W; Huang Z; Li Z; Chen JF
    Cereb Cortex; 2020 Mar; 30(3):1366-1381. PubMed ID: 31690946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference: further evidence for the involvement of the ventral striatopallidal system in reward-related processes.
    McAlonan GM; Robbins TW; Everitt BJ
    Neuroscience; 1993 Feb; 52(3):605-20. PubMed ID: 8450962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding.
    Corbit LH; Janak PH
    J Neurosci; 2007 Dec; 27(51):13977-81. PubMed ID: 18094235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Zone Proteins RIM1αβ Are Required for Normal Corticostriatal Transmission and Action Control.
    Kupferschmidt DA; Augustin SM; Johnson KA; Lovinger DM
    J Neurosci; 2019 Feb; 39(8):1457-1470. PubMed ID: 30559150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems.
    Everitt BJ; Parkinson JA; Olmstead MC; Arroyo M; Robledo P; Robbins TW
    Ann N Y Acad Sci; 1999 Jun; 877():412-38. PubMed ID: 10415662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits.
    Lingawi NW; Balleine BW
    J Neurosci; 2012 Jan; 32(3):1073-81. PubMed ID: 22262905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning.
    Corbit LH; Janak PH
    Eur J Neurosci; 2010 Apr; 31(7):1312-21. PubMed ID: 20345912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring action-dependent outcome representations depends on anterior but not posterior medial orbitofrontal cortex.
    Bradfield LA; Hart G; Balleine BW
    Neurobiol Learn Mem; 2018 Nov; 155():463-473. PubMed ID: 30243849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.