BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24231682)

  • 1. Evolution of the gastrin-cholecystokinin gene family revealed by synteny analysis.
    Dupré D; Tostivint H
    Gen Comp Endocrinol; 2014 Jan; 195():164-73. PubMed ID: 24231682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny of the cholecystokinin/gastrin family.
    Johnsen AH
    Front Neuroendocrinol; 1998 Apr; 19(2):73-99. PubMed ID: 9578981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasmobranchs express separate cholecystokinin and gastrin genes.
    Johnsen AH; Jonson L; Rourke IJ; Rehfeld JF
    Proc Natl Acad Sci U S A; 1997 Sep; 94(19):10221-6. PubMed ID: 9294191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of gastrointestinal hormones: the cholecystokinin/gastrin family.
    Baldwin GS; Patel O; Shulkes A
    Curr Opin Endocrinol Diabetes Obes; 2010 Feb; 17(1):77-88. PubMed ID: 19952740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family.
    Ocampo Daza D; Larhammar D
    Gen Comp Endocrinol; 2018 Aug; 264():94-112. PubMed ID: 29339183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of gastrin and multiple cholecystokinin genes in teleost.
    Kurokawa T; Suzuki T; Hashimoto H
    Peptides; 2003 Feb; 24(2):227-35. PubMed ID: 12668207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and functional characterization of cionin receptors in the ascidian, Ciona intestinalis: the evolutionary origin of the vertebrate cholecystokinin/gastrin family.
    Sekiguchi T; Ogasawara M; Satake H
    J Endocrinol; 2012 Apr; 213(1):99-106. PubMed ID: 22289502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vertebrate nicotinic acetylcholine receptors.
    Pedersen JE; Bergqvist CA; Larhammar D
    BMC Evol Biol; 2019 Jan; 19(1):38. PubMed ID: 30700248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the evolution of the somatostatin family: Already five genes in the gnathostome ancestor.
    Tostivint H; Gaillard AL; Mazan S; Pézeron G
    Gen Comp Endocrinol; 2019 Aug; 279():139-147. PubMed ID: 30836103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the cholecystokinin and gastrin genes from the bullfrog, Rana catesbeiana: evolutionary conservation of primary and secondary sites of gene expression.
    Rourke IJ; Rehfeld JF; Møller M; Johnsen AH
    Endocrinology; 1997 Apr; 138(4):1719-27. PubMed ID: 9075736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cholecystokinin, gastrin, and their receptors in the mouse cornea.
    Gonzalez-Coto AF; Alonso-Ron C; Alcalde I; Gallar J; Meana Á; Merayo-Lloves J; Belmonte C
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1965-75. PubMed ID: 24576871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary conservation of the cholecystokinin/gastrin signaling system in nematodes.
    Janssen T; Meelkop E; Nachman RJ; Schoofs L
    Ann N Y Acad Sci; 2009 Apr; 1163():428-32. PubMed ID: 19456378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.
    Opazo JC; Lee AP; Hoffmann FG; Toloza-Villalobos J; Burmester T; Venkatesh B; Storz JF
    Mol Biol Evol; 2015 Jul; 32(7):1684-94. PubMed ID: 25743544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCK(-like) and receptors: structure and phylogeny in a comparative perspective.
    Yu N; Smagghe G
    Gen Comp Endocrinol; 2014 Dec; 209():74-81. PubMed ID: 24842717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage.
    Wichmann IA; Zavala K; Hoffmann FG; Vandewege MW; Corvalán AH; Amigo JD; Owen GI; Opazo JC
    Gene; 2016 Oct; 591(1):245-254. PubMed ID: 27432065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts.
    Maugars G; Nourizadeh-Lillabadi R; Weltzien FA
    Front Endocrinol (Lausanne); 2020; 11():538196. PubMed ID: 33071966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates.
    Zhang Z; Liu J; Li M; Yang H; Zhang C
    PLoS One; 2012; 7(11):e49265. PubMed ID: 23166625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.
    Cardoso JC; Bergqvist CA; Félix RC; Larhammar D
    J Mol Endocrinol; 2016 Jul; 57(1):73-86. PubMed ID: 27220618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.