BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24231814)

  • 1. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the rotational axes of the tibiofemoral joint caused by resection of the anterior cruciate ligament.
    Bonny DP; Howell SM; Hull ML
    J Orthop Res; 2017 Apr; 35(4):886-893. PubMed ID: 27219459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and demonstration of a new instrumented spatial linkage for use in a dynamic environment: application to measurement of ankle rotations during snowboarding.
    Nordquist J; Hull ML
    J Biomech Eng; 2007 Apr; 129(2):231-9. PubMed ID: 17408328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An instrumented spatial linkage for measuring knee joint kinematics.
    Rosvold JM; Atarod M; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):43-8. PubMed ID: 26471425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Coordinate System Using Functional Axes Achieves Clinically Meaningful Kinematics of the Tibiofemoral Joint as Compared to the International Society of Biomechanics Recommendation.
    Pourtabib J; Hull ML
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36629005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability, reproducibility, and agreement of three computational methods to approximate the functional flexion-extension axis of the tibiofemoral joint using 3D bone models of the femur.
    Lozano R; Howell SM; Hull ML
    Comput Methods Biomech Biomed Engin; 2019 Nov; 22(14):1144-1152. PubMed ID: 31347394
    [No Abstract]   [Full Text] [Related]  

  • 11. Modeling the Human Tibiofemoral Joint Using Ex Vivo Determined Compliance Matrices.
    Lamberto G; Richard V; Dumas R; Valentini PP; Pennestrì E; Lu TW; Camomilla V; Cappozzo A
    J Biomech Eng; 2016 Jun; 138(6):061010. PubMed ID: 27109706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6R instrumented spatial linkages for anatomical joint motion measurement--Part 2: Calibration.
    Kirstukas SJ; Lewis JL; Erdman AG
    J Biomech Eng; 1992 Feb; 114(1):101-10. PubMed ID: 1491572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flexion-extension axis of the knee and its relationship to the rotational orientation of the tibial plateau.
    Lawrie CM; Noble PC; Ismaily SK; Stal D; Incavo SJ
    J Arthroplasty; 2011 Sep; 26(6 Suppl):53-58.e1. PubMed ID: 21723702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion.
    Lin KJ; Huang CH; Liu YL; Chen WC; Chang TW; Yang CT; Lai YS; Cheng CK
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):847-52. PubMed ID: 21546143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes.
    Lewis GS; Sommer HJ; Piazza SJ
    J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and location of the finite helical axis of the equine forelimb joints.
    Kaashoek M; Hobbs SJ; Clayton HM; Aerts P; Nauwelaerts S
    J Morphol; 2019 May; 280(5):712-721. PubMed ID: 30888078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study.
    Seisler AR; Sheehan FT
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1333-41. PubMed ID: 17605365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transepicondylar axis approximates the optimal flexion axis of the knee.
    Churchill DL; Incavo SJ; Johnson CC; Beynnon BD
    Clin Orthop Relat Res; 1998 Nov; (356):111-8. PubMed ID: 9917674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a new general-purpose device for calibrating instrumented spatial linkages.
    Nordquist JA; Hull ML
    J Biomech Eng; 2009 Mar; 131(3):034505. PubMed ID: 19154076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Correction of Errors in Computing Contact Location Between Curved Articular Surfaces: Application to Total Knee Arthroplasty.
    Roth JD; Howell SM; Hull ML
    J Biomech Eng; 2017 Jun; 139(6):. PubMed ID: 28267191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.