BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24231814)

  • 41. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tibiofemoral joint contact forces and knee kinematics during squatting.
    Smith SM; Cockburn RA; Hemmerich A; Li RM; Wyss UP
    Gait Posture; 2008 Apr; 27(3):376-86. PubMed ID: 17583512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of passive tibio-femoral joint movement of Beagle dogs during flexion in cadaveric hind limbs without muscle.
    Ichinohe T; Kanno N; Harada Y; Fujita Y; Fujie H; Hara Y
    J Vet Med Sci; 2020 Feb; 82(2):148-152. PubMed ID: 31839649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Standardisation of the description of patellofemoral motion and comparison between different techniques.
    Bull AM; Katchburian MV; Shih YF; Amis AA
    Knee Surg Sports Traumatol Arthrosc; 2002 May; 10(3):184-93. PubMed ID: 12012037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint.
    Chokhandre S; Colbrunn R; Bennetts C; Erdemir A
    PLoS One; 2015; 10(9):e0138226. PubMed ID: 26381404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of muscle load on tibiofemoral knee kinematics.
    Victor J; Labey L; Wong P; Innocenti B; Bellemans J
    J Orthop Res; 2010 Apr; 28(4):419-28. PubMed ID: 19890990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Two-Degree-of-Freedom Knee Model Predicts Full Three-Dimensional Tibiofemoral and Patellofemoral Joint Motion During Functional Activity.
    Guan S; Gray HA; Thomeer LT; Pandy MG
    Ann Biomed Eng; 2023 Mar; 51(3):493-505. PubMed ID: 36085332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional patellar motion at the natural knee during passive flexion/extension. An in vitro study.
    Belvedere C; Leardini A; Ensini A; Bianchi L; Catani F; Giannini S
    J Orthop Res; 2009 Nov; 27(11):1426-31. PubMed ID: 19444875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations.
    Benoit DL; Ramsey DK; Lamontagne M; Xu L; Wretenberg P; Renström P
    Clin Orthop Relat Res; 2007 Jan; 454():81-8. PubMed ID: 17202918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of the anteromedial and posterolateral bundles of the anterior cruciate ligament on external and internal tibiofemoral rotation.
    Lorbach O; Pape D; Maas S; Zerbe T; Busch L; Kohn D; Seil R
    Am J Sports Med; 2010 Apr; 38(4):721-7. PubMed ID: 20200323
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensitivity of the knee joint kinematics calculation to selection of flexion axes.
    Most E; Axe J; Rubash H; Li G
    J Biomech; 2004 Nov; 37(11):1743-8. PubMed ID: 15388317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI.
    Scarvell JM; Smith PN; Refshauge KM; Galloway HR; Woods KR
    J Orthop Res; 2004 Jul; 22(4):788-93. PubMed ID: 15183435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of the concepts of functional anatomy of the knee joint.
    Pio A; Carminati L; Stennardo G; Pedrotti L
    Chir Organi Mov; 1998; 83(4):401-11. PubMed ID: 10369021
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A generalized framework for determination of functional musculoskeletal joint coordinate systems.
    Nagle TF; Erdemir A; Colbrunn RW
    J Biomech; 2021 Oct; 127():110664. PubMed ID: 34399244
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contributions of joint rotations to racquet speed in the tennis serve.
    Gordon BJ; Dapena J
    J Sports Sci; 2006 Jan; 24(1):31-49. PubMed ID: 16368612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relative positions of the contacts on the cartilage surfaces of the knee joint.
    Walker PS; Yildirim G; Sussman-Fort J; Klein GR
    Knee; 2006 Oct; 13(5):382-8. PubMed ID: 16790353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The angles of femoral and tibial axes with respect to the cruciate ligament four-bar system in the knee joint.
    Muller M
    J Theor Biol; 1993 Mar; 161(2):221-30. PubMed ID: 8331950
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conceptual design and implantation of an external fixator with improved mobility for knee rehabilitation.
    Gatti G
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):884-892. PubMed ID: 28332404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of sequential MR image sets for determining tibiofemoral motion: reliability of coordinate systems and accuracy of motion tracking algorithm.
    Lerner AL; Tamez-Pena JG; Houck JR; Yao J; Harmon HL; Salo AD; Totterman SM
    J Biomech Eng; 2003 Apr; 125(2):246-53. PubMed ID: 12751287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.