These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24231814)

  • 61. Technical note: sensitivity analysis of the SCoRE and SARA methods for determining rotational axes during tibiofemoral movements using optical motion capture.
    Keizer MNJ; Otten E
    J Exp Orthop; 2020 Feb; 7(1):6. PubMed ID: 32040787
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint.
    Ramsey DK; Wretenberg PF
    Clin Biomech (Bristol, Avon); 1999 Nov; 14(9):595-611. PubMed ID: 10521643
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A six-degree-of-freedom acoustic transducer for rotation and translation measurements across the knee.
    Quinn TP; Mote CD
    J Biomech Eng; 1990 Nov; 112(4):371-8. PubMed ID: 2273862
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Error reduction in the finite helical axis for knee kinematics.
    Bishop EL; Küpper JC; Fjeld IR; Kuntze G; Ronsky JL
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):186-193. PubMed ID: 29446974
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detection of Tibiofemoral Joint Injury in High-Impact Motion Based on Neural Network Reconstruction Algorithm.
    Zheng H
    J Healthc Eng; 2021; 2021():5800893. PubMed ID: 34900197
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mathematical study on the guidance of the tibiofemoral joint as theoretical background for total knee replacements.
    Fiedler C; Gezzi R; Frosch KH; Wachowski MM; Kubein-Meesenburg D; Dörner J; Fanghänel J; Nägerl H
    Acta Bioeng Biomech; 2011; 13(4):38-49. PubMed ID: 22339245
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.
    Johnson TS; Andriacchi TP; Erdman AG
    Proc Inst Mech Eng H; 2004; 218(2):89-100. PubMed ID: 15116896
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics.
    Ramsey DK; Wretenberg PF; Benoit DL; Lamontagne M; Németh G
    Knee Surg Sports Traumatol Arthrosc; 2003 Sep; 11(5):344-9. PubMed ID: 12879227
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On intrinsic equivalences of the finite helical axis, the instantaneous helical axis, and the SARA approach. A mathematical perspective.
    Ehrig RM; Heller MO
    J Biomech; 2019 Feb; 84():4-10. PubMed ID: 30661733
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of functional methods for human movement modelling.
    Gastaldi L; Lisco G; Pastorelli S
    Acta Bioeng Biomech; 2015; 17(4):32-8. PubMed ID: 26899585
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro 3D-kinematics of the upper cervical spine: helical axis and simulation for axial rotation and flexion extension.
    Dugailly PM; Sobczak S; Sholukha V; Van Sint Jan S; Salvia P; Feipel V; Rooze M
    Surg Radiol Anat; 2010 Feb; 32(2):141-51. PubMed ID: 19756350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prediction of Individual Knee Kinematics From an MRI Representation of the Articular Surfaces.
    Conconi M; Sancisi N; Parenti-Castelli V
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1084-1092. PubMed ID: 32816671
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Helical axes of passive knee joint motions.
    Blankevoort L; Huiskes R; de Lange A
    J Biomech; 1990; 23(12):1219-29. PubMed ID: 2292601
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The relationship between tibiofemoral geometry and musculoskeletal function during normal activity.
    Martelli S; Sancisi N; Conconi M; Pandy MG; Kersh ME; Parenti-Castelli V; Reynolds KJ
    Gait Posture; 2020 Jul; 80():374-382. PubMed ID: 32622207
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation of predicted patellofemoral joint kinematics with a moving-axis joint model.
    Dzialo CM; Pedersen PH; Jensen KK; de Zee M; Andersen MS
    Med Eng Phys; 2019 Nov; 73():85-91. PubMed ID: 31474509
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
    Zhang JT; Novak AC; Brouwer B; Li Q
    Physiol Meas; 2013 Aug; 34(8):N63-9. PubMed ID: 23893094
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A refined technique to calculate finite helical axes from rigid body trackers.
    McLachlin SD; Ferreira LM; Dunning CE
    J Biomech Eng; 2014 Dec; 136(12):124506. PubMed ID: 25162715
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Measuring dynamic in-vivo elbow kinematics: description of technique and estimation of accuracy.
    McDonald CP; Moutzouros V; Bey MJ
    J Biomech Eng; 2012 Dec; 134(12):124502. PubMed ID: 23363209
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Measuring relative positions and orientations of the tibia with respect to the femur using one-channel 3D-tracked A-mode ultrasound tracking system: A cadaveric study.
    Niu K; Homminga J; Sluiter V; Sprengers A; Verdonschot N
    Med Eng Phys; 2018 Jul; 57():61-68. PubMed ID: 29759948
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].
    Han W; Song J; Wang GZ; Ding H; Li GS; Gong MQ; Jiang XY; Wang MY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Apr; 48(2):218-23. PubMed ID: 27080270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.