These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24231815)

  • 1. Determination and modeling of the inelasticity over the length of the porcine carotid artery.
    García A; Martínez MA; Peña E
    J Biomech Eng; 2013 Mar; 135(3):31004. PubMed ID: 24231815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis: Implications in animal cardiovascular device trials.
    García A; Peña E; Laborda A; Lostalé F; De Gregorio MA; Doblaré M; Martínez MA
    Med Eng Phys; 2011 Jul; 33(6):665-76. PubMed ID: 21371929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions.
    García A; Martínez MA; Peña E
    Biorheology; 2012; 49(4):271-88. PubMed ID: 22836081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site specific inelasticity of arterial tissue.
    Maher E; Early M; Creane A; Lally C; Kelly DJ
    J Biomech; 2012 May; 45(8):1393-9. PubMed ID: 22445610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
    Stylianopoulos T; Barocas VH
    J Biomech Eng; 2007 Aug; 129(4):611-8. PubMed ID: 17655483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue softening of guinea pig oesophagus tested by the tri-axial test machine.
    Liao D; Zhao J; Kunwald P; Gregersen H
    J Biomech; 2009 May; 42(7):804-10. PubMed ID: 19268949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of biaxial tension tests of soft tissues.
    Bursa J; Zemanek M
    Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic and rupture properties of porcine aortic tissue measured using inflation testing.
    Marra SP; Kennedy FE; Kinkaid JN; Fillinger MF
    Cardiovasc Eng; 2006 Dec; 6(4):123-31. PubMed ID: 17136596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of the softening behavior of human vaginal tissue.
    Peña E; Martins P; Mascarenhas T; Natal Jorge RM; Ferreira A; Doblaré M; Calvo B
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):275-83. PubMed ID: 21316615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation into the role of different constituents in damage accumulation in arterial tissue and constitutive model development.
    Ghasemi M; Nolan DR; Lally C
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1757-1769. PubMed ID: 30058051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA; Shadwick RE; Gosline JM
    J Biomech; 2010 Aug; 43(11):2070-8. PubMed ID: 20430395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evidence of the compressibility of arteries.
    Yosibash Z; Manor I; Gilad I; Willentz U
    J Mech Behav Biomed Mater; 2014 Nov; 39():339-54. PubMed ID: 25173235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental in vitro mechanical characterization of porcine Glisson's capsule and hepatic veins.
    Umale S; Chatelin S; Bourdet N; Deck C; Diana M; Dhumane P; Soler L; Marescaux J; Willinger R
    J Biomech; 2011 Jun; 44(9):1678-83. PubMed ID: 21481399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.