These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24231820)

  • 1. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
    Weng HC
    J Biomech Eng; 2013 Mar; 135(3):34504. PubMed ID: 24231820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro study of magnetic particle targeting in small blood vessels.
    Udrea LE; Strachan NJ; Bădescu V; Rotariu O
    Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of trajectories for targeting of magnetic nanoparticles in blood vessels.
    Heidsieck A; Vosen S; Zimmermann K; Wenzel D; Gleich B
    Mol Pharm; 2012 Jul; 9(7):2029-38. PubMed ID: 22663555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico studies of magnetic microparticle aggregations in fluid environments for MRI-guided drug delivery.
    Vartholomeos P; Mavroidis C
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3028-38. PubMed ID: 22907964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.
    Cherry EM; Maxim PG; Eaton JK
    Med Phys; 2010 Jan; 37(1):175-82. PubMed ID: 20175479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids.
    Nowak J; Wiekhorst F; Trahms L; Odenbach S
    J Phys Condens Matter; 2014 Apr; 26(17):176004. PubMed ID: 24721897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect.
    Leong SS; Ahmad Z; Lim J
    Soft Matter; 2015 Sep; 11(35):6968-80. PubMed ID: 26234726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.
    Pourmehran O; Gorji TB; Gorji-Bandpy M
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1355-74. PubMed ID: 26886215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Magnetic Nanocontainers Navigation in Blood Vessels: A Feedback Control Approach.
    Do TD; Noh Y; Kim MO; Yoon J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6368-73. PubMed ID: 27427720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of bio-mimetic particles with enhanced vascular interaction.
    Lee SY; Ferrari M; Decuzzi P
    J Biomech; 2009 Aug; 42(12):1885-90. PubMed ID: 19523635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia.
    Sutradhar A
    Microvasc Res; 2021 Jan; 133():104099. PubMed ID: 33144121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model.
    Lueshen E; Venugopal I; Kanikunnel J; Soni T; Alaraj A; Linninger A
    Nanomedicine (Lond); 2014; 9(8):1155-69. PubMed ID: 23862614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically targeted nanoparticles for brain tumor therapy: what does the future hold?
    David AE; Cole AJ; Yang VC
    Nanomedicine (Lond); 2011 Sep; 6(7):1133-5. PubMed ID: 21929450
    [No Abstract]   [Full Text] [Related]  

  • 15. Aggregation process of paramagnetic particles in fluid in the magnetic field.
    Pei N; Cheng X; Huang Z; Wang X; Yang K; Wang Y; Gong Y
    Bioelectromagnetics; 2016 Jul; 37(5):323-30. PubMed ID: 27126920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.
    Bakhteeva Iu; Medvedeva I; Byzov I; Zhakov S; Yermakov A; Uimin M; Shchegoleva N
    Environ Technol; 2015; 36(13-16):1828-36. PubMed ID: 25650300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic targeting in the impermeable microvessel with two-phase fluid model--non-Newtonian characteristics of blood.
    Shaw S; Murthy PV
    Microvasc Res; 2010 Sep; 80(2):209-20. PubMed ID: 20478317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Magnetic dipole interaction of endogenous magnetic nanoparticles with magnetoliposomes for targeted drug delivery].
    Gorobets SV; Gorobets OIu; Chizh IuM; Siveniuk DV
    Biofizika; 2013; 58(3):488-94. PubMed ID: 24159818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and biochemical aspects of leukocyte interactions with model vessel walls.
    McIntire LV; Eskin SG
    Kroc Found Ser; 1984; 16():209-19. PubMed ID: 6585482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.