These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24231822)
1. Combined in vivo/in vitro method to study anteriomedial bundle strain in the anterior cruciate ligament using a dynamic knee simulator. Cassidy K; Hangalur G; Sabharwal P; Chandrashekar N J Biomech Eng; 2013 Mar; 135(3):35001. PubMed ID: 24231822 [TBL] [Abstract][Full Text] [Related]
2. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Clin Biomech (Bristol); 2006 Nov; 21(9):977-83. PubMed ID: 16790304 [TBL] [Abstract][Full Text] [Related]
3. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Am J Sports Med; 2006 Feb; 34(2):269-74. PubMed ID: 16260464 [TBL] [Abstract][Full Text] [Related]
4. Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation. Hashemi J; Breighner R; Jang TH; Chandrashekar N; Ekwaro-Osire S; Slauterbeck JR Knee; 2010 Jun; 17(3):235-41. PubMed ID: 19864146 [TBL] [Abstract][Full Text] [Related]
5. Computational study of extrinsic factors affecting ACL strain during single-leg jump landing. Rao H; Bakker R; McLachlin S; Chandrashekar N BMC Musculoskelet Disord; 2024 Apr; 25(1):318. PubMed ID: 38654258 [TBL] [Abstract][Full Text] [Related]
6. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses. Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT J Athl Train; 2013; 48(6):748-56. PubMed ID: 23944382 [TBL] [Abstract][Full Text] [Related]
7. Effect of sagittal plane mechanics on ACL strain during jump landing. Bakker R; Tomescu S; Brenneman E; Hangalur G; Laing A; Chandrashekar N J Orthop Res; 2016 Sep; 34(9):1636-44. PubMed ID: 26771080 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography. Englander ZA; Baldwin EL; Smith WAR; Garrett WE; Spritzer CE; DeFrate LE Am J Sports Med; 2019 Nov; 47(13):3166-3172. PubMed ID: 31593498 [TBL] [Abstract][Full Text] [Related]
9. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities. Kar J; Quesada PM Ann Biomed Eng; 2012 Aug; 40(8):1679-91. PubMed ID: 22527014 [TBL] [Abstract][Full Text] [Related]
10. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Weinhold PS; Stewart JD; Liu HY; Lin CF; Garrett WE; Yu B Injury; 2007 Aug; 38(8):973-8. PubMed ID: 17306267 [TBL] [Abstract][Full Text] [Related]
11. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA J Bone Joint Surg Am; 2008 Apr; 90(4):815-23. PubMed ID: 18381320 [TBL] [Abstract][Full Text] [Related]
12. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Kernozek TW; Ragan RJ Clin Biomech (Bristol); 2008 Dec; 23(10):1279-86. PubMed ID: 18790553 [TBL] [Abstract][Full Text] [Related]
13. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. Shin CS; Chaudhari AM; Andriacchi TP J Biomech; 2007; 40(5):1145-52. PubMed ID: 16797556 [TBL] [Abstract][Full Text] [Related]
14. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572 [TBL] [Abstract][Full Text] [Related]
15. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. McLean SG; Huang X; Su A; Van Den Bogert AJ Clin Biomech (Bristol); 2004 Oct; 19(8):828-38. PubMed ID: 15342155 [TBL] [Abstract][Full Text] [Related]
16. Correlation between anterior cruciate ligament graft obliquity and tibial rotation during dynamic pivoting activities in patients with anatomic anterior cruciate ligament reconstruction: an in vivo examination. Zampeli F; Ntoulia A; Giotis D; Tsiaras VA; Argyropoulou M; Pappas E; Georgoulis AD Arthroscopy; 2012 Feb; 28(2):234-46. PubMed ID: 22078004 [TBL] [Abstract][Full Text] [Related]
17. The effects of single-leg landing technique on ACL loading. Laughlin WA; Weinhandl JT; Kernozek TW; Cobb SC; Keenan KG; O'Connor KM J Biomech; 2011 Jul; 44(10):1845-51. PubMed ID: 21561623 [TBL] [Abstract][Full Text] [Related]
18. Can a knee brace reduce the strain in the anterior cruciate ligament? A study using combined in vivo/in vitro method. Hangalur G; Brenneman E; Nicholls M; Bakker R; Laing A; Chandrashekar N Prosthet Orthot Int; 2016 Jun; 40(3):394-9. PubMed ID: 25805754 [TBL] [Abstract][Full Text] [Related]
19. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. Fleming BC; Renstrom PA; Ohlen G; Johnson RJ; Peura GD; Beynnon BD; Badger GJ J Orthop Res; 2001 Nov; 19(6):1178-84. PubMed ID: 11781021 [TBL] [Abstract][Full Text] [Related]
20. Lower extremity biomechanics during the landing of a stop-jump task. Yu B; Lin CF; Garrett WE Clin Biomech (Bristol); 2006 Mar; 21(3):297-305. PubMed ID: 16378667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]