These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24231822)

  • 21. Biomechanical simulation of anterior cruciate ligament strain for sports injury prevention.
    Zhang Y; Liu G; Xie SQ
    Comput Biol Med; 2011 Mar; 41(3):159-63. PubMed ID: 21292250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anterior Cruciate Ligament Loading Increases With Pivot-Shift Mechanism During Asymmetrical Drop Vertical Jump in Female Athletes.
    Ueno R; Navacchia A; Schilaty ND; Myer GD; Hewett TE; Bates NA
    Orthop J Sports Med; 2021 Mar; 9(3):2325967121989095. PubMed ID: 34235227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insufficient hamstring strength compromises landing technique in adolescent girls.
    Wild CY; Steele JR; Munro BJ
    Med Sci Sports Exerc; 2013 Mar; 45(3):497-505. PubMed ID: 23059866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of Anterior Cruciate Ligament Loading during Dynamic Motor Tasks.
    Nasseri A; Lloyd DG; Bryant AL; Headrick J; Sayer TA; Saxby DJ
    Med Sci Sports Exerc; 2021 Jun; 53(6):1235-1244. PubMed ID: 33731661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing.
    Taylor KA; Terry ME; Utturkar GM; Spritzer CE; Queen RM; Irribarra LA; Garrett WE; DeFrate LE
    J Biomech; 2011 Feb; 44(3):365-71. PubMed ID: 21092960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics.
    Myer GD; Ford KR; McLean SG; Hewett TE
    Am J Sports Med; 2006 Mar; 34(3):445-55. PubMed ID: 16282579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern of anterior cruciate ligament force in normal walking.
    Shelburne KB; Pandy MG; Anderson FC; Torry MR
    J Biomech; 2004 Jun; 37(6):797-805. PubMed ID: 15111067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ calibration of miniature sensors implanted into the anterior cruciate ligament part I: strain measurements.
    Markolf KL; Willems MJ; Jackson SR; Finerman GA
    J Orthop Res; 1998 Jul; 16(4):455-63. PubMed ID: 9747787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ; Lujan TJ; Dalton MS; Weiss JA
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peak ACL force during jump landing in downhill skiing is less sensitive to landing height than landing position.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Br J Sports Med; 2018 Sep; 52(17):1086-1090. PubMed ID: 29954827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting neuromuscular control patterns that minimize ACL forces during injury-prone jump-landing manoeuvres in downhill skiing using a musculoskeletal simulation model.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Eur J Sport Sci; 2023 May; 23(5):703-713. PubMed ID: 35400304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of relative injury risk profiles on anterior cruciate ligament and medial collateral ligament strain during simulated landing leading to a noncontact injury event.
    Bates NA; Schilaty ND; Krych AJ; Hewett TE
    Clin Biomech (Bristol); 2019 Oct; 69():44-51. PubMed ID: 31295670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the loading mechanics of anterior cruciate ligament.
    Nasseri A; Khataee H; Bryant AL; Lloyd DG; Saxby DJ
    Comput Methods Programs Biomed; 2020 Feb; 184():105098. PubMed ID: 31698195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipatory effects on anterior cruciate ligament loading during sidestep cutting.
    Weinhandl JT; Earl-Boehm JE; Ebersole KT; Huddleston WE; Armstrong BS; O'Connor KM
    Clin Biomech (Bristol); 2013 Jul; 28(6):655-63. PubMed ID: 23810662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Scand J Med Sci Sports; 2014 Jun; 24(3):e180-7. PubMed ID: 24118532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of fatigue on frontal plane knee motion, muscle activity, and ground reaction forces in men and women during landing.
    Smith MP; Sizer PS; James CR
    J Sports Sci Med; 2009; 8(3):419-27. PubMed ID: 24150006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sex-Based Differences in Knee Kinetics With Anterior Cruciate Ligament Strain on Cadaveric Impact Simulations.
    Schilaty ND; Bates NA; Nagelli C; Krych AJ; Hewett TE
    Orthop J Sports Med; 2018 Mar; 6(3):2325967118761037. PubMed ID: 29568787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of different landing actions on knee joint biomechanics of female college athletes: Based on opensim simulation.
    Chen L; Jiang Z; Yang C; Cheng R; Zheng S; Qian J
    Front Bioeng Biotechnol; 2022; 10():899799. PubMed ID: 36394018
    [No Abstract]   [Full Text] [Related]  

  • 40. From the gait laboratory to the rehabilitation clinic: translation of motion analysis and modeling data to interventions that impact anterior cruciate ligament loads in gait and drop landing.
    Kernozek T; Torry M; Shelburne K; Durall CJ; Willson J
    Crit Rev Biomed Eng; 2013; 41(3):243-58. PubMed ID: 24579646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.