These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 24231898)
1. Theoretical analysis of the state of balance in bipedal walking. Firmani F; Park EJ J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898 [TBL] [Abstract][Full Text] [Related]
2. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment. Hong YD Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573 [TBL] [Abstract][Full Text] [Related]
3. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot. Or J Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370 [TBL] [Abstract][Full Text] [Related]
4. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot. Ferreira JP; Crisóstomo MM; Coimbra AP IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908 [TBL] [Abstract][Full Text] [Related]
5. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain. Joe HM; Oh JH Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700 [TBL] [Abstract][Full Text] [Related]
6. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
7. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion. Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330 [TBL] [Abstract][Full Text] [Related]
8. Motion synthesis and force distribution analysis for a biped robot. Trojnacki MT; Zielińska T Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of natural arm swing motion in human bipedal walking. Park J J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems. Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222 [TBL] [Abstract][Full Text] [Related]
11. Identification of Human Walking Balance Controller Based on COM-ZMP Model of Humanoid Robot. Yoshikawa T Front Robot AI; 2022; 9():757630. PubMed ID: 35280957 [TBL] [Abstract][Full Text] [Related]
12. 3-D Dynamic Walking Trajectory Generation for a Bipedal Exoskeleton with Underactuated Legs: A Proof of Concept. Soliman AF; Sendur P; Ugurlu B IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():599-604. PubMed ID: 31374696 [TBL] [Abstract][Full Text] [Related]
13. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics. Jung CK; Park S J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797 [TBL] [Abstract][Full Text] [Related]
14. Effect of forward-directed aiding force on gait mechanics in healthy young adults while walking faster. Dionisio VC; Hurt CP; Brown DA Gait Posture; 2018 Jul; 64():12-17. PubMed ID: 29803081 [TBL] [Abstract][Full Text] [Related]
15. Stumbling with optimal phase reset during gait can prevent a humanoid from falling. Nakanishi M; Nomura T; Sato S Biol Cybern; 2006 Nov; 95(5):503-15. PubMed ID: 16969676 [TBL] [Abstract][Full Text] [Related]
16. Human foot placement and balance in the sagittal plane. Millard M; Wight D; McPhee J; Kubica E; Wang D J Biomech Eng; 2009 Dec; 131(12):121001. PubMed ID: 20524724 [TBL] [Abstract][Full Text] [Related]
17. Dynamic motion planning of 3D human locomotion using gradient-based optimization. Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851 [TBL] [Abstract][Full Text] [Related]
19. Foot and body control of biped robots to walk on irregularly protruded uneven surfaces. Park JH; Kim ES IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):289-97. PubMed ID: 19068443 [TBL] [Abstract][Full Text] [Related]
20. Elastic coupling of limb joints enables faster bipedal walking. Dean JC; Kuo AD J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]