These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24231901)

  • 41. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts.
    Fink M; Callol-Massot C; Chu A; Ruiz-Lozano P; Izpisua Belmonte JC; Giles W; Bodmer R; Ocorr K
    Biotechniques; 2009 Feb; 46(2):101-13. PubMed ID: 19317655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zebrafish as a model of cardiac disease.
    Wilkinson RN; Jopling C; van Eeden FJ
    Prog Mol Biol Transl Sci; 2014; 124():65-91. PubMed ID: 24751427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying blood flow dynamics during cardiac development: demystifying computational methods.
    Courchaine K; Rugonyi S
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1759):. PubMed ID: 30249779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis.
    Hove JR; Köster RW; Forouhar AS; Acevedo-Bolton G; Fraser SE; Gharib M
    Nature; 2003 Jan; 421(6919):172-7. PubMed ID: 12520305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos.
    Ceffa NG; Cesana I; Collini M; D'Alfonso L; Carra S; Cotelli F; Sironi L; Chirico G
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29030941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry.
    Stovall S; Midgett M; Thornburg K; Rugonyi S
    J Biomed Opt; 2016 Nov; 21(11):116003. PubMed ID: 27812694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy.
    Benslimane FM; Zakaria ZZ; Shurbaji S; Abdelrasool MKA; Al-Badr MAHI; Al Absi ESK; Yalcin HC
    Micron; 2020 Sep; 136():102876. PubMed ID: 32512409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo wall shear measurements within the developing zebrafish heart.
    Jamison RA; Samarage CR; Bryson-Richardson RJ; Fouras A
    PLoS One; 2013; 8(10):e75722. PubMed ID: 24124507
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing Pressure-Volume Relationship in Developing Heart of Zebrafish In-Vivo.
    Salehin N; Villarreal C; Teranikar T; Dubansky B; Lee J; Chuong CJ
    Ann Biomed Eng; 2021 Sep; 49(9):2080-2093. PubMed ID: 33532949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ZebraPace: An Open-Source Method for Cardiac-Rhythm Estimation in Untethered Zebrafish Larvae.
    Gaur H; Pullaguri N; Nema S; Purushothaman S; Bhargava Y; Bhargava A
    Zebrafish; 2018 Jun; 15(3):254-262. PubMed ID: 29653072
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time optical gating for three-dimensional beating heart imaging.
    Taylor JM; Saunter CD; Love GD; Girkin JM; Henderson DJ; Chaudhry B
    J Biomed Opt; 2011 Nov; 16(11):116021. PubMed ID: 22112126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development.
    Gendernalik A; Zebhi B; Ahuja N; Garrity D; Bark D
    Ann Biomed Eng; 2021 Feb; 49(2):834-845. PubMed ID: 32959136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altering embryonic cardiac dynamics with optical pacing.
    Peterson LM; McPheeters M; Barwick L; Gu S; Rollins AM; Jenkins MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1382-5. PubMed ID: 23366157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging.
    Boonruangkan J; Farrokhi H; Rohith TM; Kwok S; Carney TJ; Su PC; Kim YJ
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34773396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development.
    Machikhin AS; Volkov MV; Burlakov AB; Khokhlov DD; Potemkin AV
    Diagnostics (Basel); 2020 Oct; 10(11):. PubMed ID: 33143148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell-accurate optical mapping across the entire developing heart.
    Weber M; Scherf N; Meyer AM; Panáková D; Kohl P; Huisken J
    Elife; 2017 Dec; 6():. PubMed ID: 29286002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease.
    Salman HE; Yalcin HC
    J Cardiovasc Dev Dis; 2021 Jan; 8(2):. PubMed ID: 33572675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A bioelectrical phase transition patterns the first vertebrate heartbeats.
    Jia BZ; Qi Y; Wong-Campos JD; Megason SG; Cohen AE
    Nature; 2023 Oct; 622(7981):149-155. PubMed ID: 37758945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Imaging photoplethysmography and videocapillaroscopy enable noninvasive study of zebrafish cardiovascular system functioning.
    Machikhin AS; Burlakov AB; Volkov MV; Khokhlov DD
    J Biophotonics; 2020 Jul; 13(7):e202000061. PubMed ID: 32306547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.