These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 24231959)
1. On the modeling of an intervertebral disc using a novel large deformation multi-shell approach. Demers S; Bouzid AH; Nadeau S J Biomech Eng; 2013 May; 135(5):51003. PubMed ID: 24231959 [TBL] [Abstract][Full Text] [Related]
2. Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression. Demers S; Nadeau S; Bouzid AH J Biomech Eng; 2016 Apr; 138(4):041004. PubMed ID: 26833355 [TBL] [Abstract][Full Text] [Related]
3. Elastic fibers in the anulus fibrosus of the dog intervertebral disc. Johnson EF; Caldwell RW; Berryman HE; Miller A; Chetty K Acta Anat (Basel); 1984; 118(4):238-42. PubMed ID: 6720244 [TBL] [Abstract][Full Text] [Related]
4. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Goel VK; Monroe BT; Gilbertson LG; Brinckmann P Spine (Phila Pa 1976); 1995 Mar; 20(6):689-98. PubMed ID: 7604345 [TBL] [Abstract][Full Text] [Related]
5. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks. Ghezelbash F; Eskandari AH; Shirazi-Adl A; Kazempour M; Tavakoli J; Baghani M; Costi JJ Acta Biomater; 2021 Mar; 123():208-221. PubMed ID: 33453409 [TBL] [Abstract][Full Text] [Related]
6. Single lamellar mechanics of the human lumbar anulus fibrosus. Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871 [TBL] [Abstract][Full Text] [Related]
7. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748 [TBL] [Abstract][Full Text] [Related]
8. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). Goto K; Tajima N; Chosa E; Totoribe K; Kubo S; Kuroki H; Arai T J Orthop Sci; 2003; 8(4):577-84. PubMed ID: 12898313 [TBL] [Abstract][Full Text] [Related]
9. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. Baer AE; Laursen TA; Guilak F; Setton LA J Biomech Eng; 2003 Feb; 125(1):1-11. PubMed ID: 12661192 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. Little JP; Adam CJ; Evans JH; Pettet GJ; Pearcy MJ J Biomech; 2007; 40(12):2744-51. PubMed ID: 17383659 [TBL] [Abstract][Full Text] [Related]
11. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology. Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515 [TBL] [Abstract][Full Text] [Related]
12. Mechanobiology of the intervertebral disc and relevance to disc degeneration. Setton LA; Chen J J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():52-7. PubMed ID: 16595444 [TBL] [Abstract][Full Text] [Related]
13. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Clouthier AL; Hosseini HS; Maquer G; Zysset PK Med Eng Phys; 2015 Jun; 37(6):599-604. PubMed ID: 25922211 [TBL] [Abstract][Full Text] [Related]
14. Finite-element modeling of the synthetic intervertebral disc. Langrana NA; Lee CK; Yang SW Spine (Phila Pa 1976); 1991 Jun; 16(6 Suppl):S245-52. PubMed ID: 1830704 [TBL] [Abstract][Full Text] [Related]
15. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc. Malandrino A; Noailly J; Lacroix D J Biomech; 2014 Apr; 47(6):1520-5. PubMed ID: 24612720 [TBL] [Abstract][Full Text] [Related]
16. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826 [TBL] [Abstract][Full Text] [Related]
17. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. Cronin DS J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282 [TBL] [Abstract][Full Text] [Related]
18. Fibre-matrix interaction in the human annulus fibrosus. Guo Z; Shi X; Peng X; Caner F J Mech Behav Biomed Mater; 2012 Jan; 5(1):193-205. PubMed ID: 22100094 [TBL] [Abstract][Full Text] [Related]
19. A nonlinear hyperelastic mixture theory model for anisotropy, transport, and swelling of annulus fibrosus. Sun DD; Leong KW Ann Biomed Eng; 2004 Jan; 32(1):92-102. PubMed ID: 14964725 [TBL] [Abstract][Full Text] [Related]
20. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression. Silva P; Crozier S; Veidt M; Pearcy MJ J Mater Sci Mater Med; 2005 Jul; 16(7):663-9. PubMed ID: 15965599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]