BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24231962)

  • 1. An experimental and modeling study of the viscoelastic behavior of collagen gel.
    Xu B; Li H; Zhang Y
    J Biomech Eng; 2013 May; 135(5):54501. PubMed ID: 24231962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum.
    Xu B; Li H; Zhang Y
    Biomatter; 2013; 3(3):. PubMed ID: 23628869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the viscoelastic behavior of collagen gel from dynamic oscillatory shear measurements.
    Li H; Zhang Y
    Biorheology; 2014; 51(6):369-80. PubMed ID: 25633438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum.
    Wang Y; Li H; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():634-641. PubMed ID: 29101895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.
    Yang L; van der Werf KO; Dijkstra PJ; Feijen J; Bennink ML
    J Mech Behav Biomed Mater; 2012 Feb; 6():148-58. PubMed ID: 22301184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering.
    Elias PZ; Spector M
    J Mech Behav Biomed Mater; 2012 Aug; 12():63-73. PubMed ID: 22659367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension.
    Dhume RY; Barocas VH
    Acta Biomater; 2019 Mar; 87():245-255. PubMed ID: 30682422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of model segments of collagen molecules.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Matrix Biol; 2012 Mar; 31(2):141-9. PubMed ID: 22204879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Seya D; Kitajima T; Kosawada T; Nakamura T; Umezu M
    J Artif Organs; 2010 Sep; 13(3):139-44. PubMed ID: 20614226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and micromechanical characterization of type I collagen gels.
    Latinovic O; Hough LA; Daniel Ou-Yang H
    J Biomech; 2010 Feb; 43(3):500-5. PubMed ID: 19880123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of isolated collagen fibrils.
    Shen ZL; Kahn H; Ballarini R; Eppell SJ
    Biophys J; 2011 Jun; 100(12):3008-15. PubMed ID: 21689535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incremental mechanics of collagen gels: new experiments and a new viscoelastic model.
    Pryse KM; Nekouzadeh A; Genin GM; Elson EL; Zahalak GI
    Ann Biomed Eng; 2003 Nov; 31(10):1287-96. PubMed ID: 14649502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Recruitment Model of Tendon Viscoelasticity That Incorporates Fibril Creep and Explains Strain-Dependent Relaxation.
    Shearer T; Parnell WJ; Lynch B; Screen HRC; David Abrahams I
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 34043761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.