These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 24232392)
1. Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Szmidt AE; El-Kassaby YA; Sigurgeirsson A; Aldèn T; Lindgren D; Hällgren JE Theor Appl Genet; 1988 Dec; 76(6):841-5. PubMed ID: 24232392 [TBL] [Abstract][Full Text] [Related]
2. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Sutton BC; Flanagan DJ; Gawley JR; Newton CH; Lester DT; El-Kassaby YA Theor Appl Genet; 1991 Aug; 82(2):242-8. PubMed ID: 24213073 [TBL] [Abstract][Full Text] [Related]
3. Relationship between nuclear DNA markers and physiological parameters in Sitka x interior spruce populations. Grossnickle SC; Sutton BC; Folk RS; Gawley RJ Tree Physiol; 1996 Jun; 16(6):547-55. PubMed ID: 14871708 [TBL] [Abstract][Full Text] [Related]
4. BIOMETRIC ANALYSIS OF MODERN AND LATE PLEISTOCENE CONES OF PICEA FROM WESTERN CANADA. Warner BG; Chmielewski JG New Phytol; 1987 Oct; 107(2):449-457. PubMed ID: 33873842 [TBL] [Abstract][Full Text] [Related]
5. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient. Hamilton JA; Aitken SN Am J Bot; 2013 Aug; 100(8):1651-62. PubMed ID: 23935108 [TBL] [Abstract][Full Text] [Related]
6. Relationships between gas exchange and carbon isotope discrimination of Sitka x interior spruce introgressive genotypes and ribosomal DNA markers. Fan S; Grossnickle SC; Sutton BC Tree Physiol; 1999 Aug; 19(10):689-694. PubMed ID: 12651325 [TBL] [Abstract][Full Text] [Related]
7. Relationships between gas exchange adaptation of Sitka x interior spruce genotypes and ribosomal DNA markers. Fan S; Grossnickle SC; Sutton BC Tree Physiol; 1997 Feb; 17(2):115-23. PubMed ID: 14759881 [TBL] [Abstract][Full Text] [Related]
8. Behavioral and Reproductive Response of White Pine Weevil (Pissodes strobi) to Resistant and Susceptible Sitka Spruce (Picea sitchensis). Robert JA; Bohlmann J Insects; 2010 Aug; 1(1):3-19. PubMed ID: 26467397 [TBL] [Abstract][Full Text] [Related]
9. Rapid identification of white-Engelmann spruce species by RAPD markers. Khasa PD; Dancik BP Theor Appl Genet; 1996 Jan; 92(1):46-52. PubMed ID: 24166115 [TBL] [Abstract][Full Text] [Related]
10. Inheritance of plastids in interspecific hybrids of blue spruce and white spruce. Stine M; Sears BB; Keathley DE Theor Appl Genet; 1989 Dec; 78(6):768-74. PubMed ID: 24226004 [TBL] [Abstract][Full Text] [Related]
11. Freezing tolerance of conifer seeds and germinants. Hawkins BJ; Guest HJ; Kolotelo D Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223 [TBL] [Abstract][Full Text] [Related]
12. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). Ralph SG; Chun HJ; Kolosova N; Cooper D; Oddy C; Ritland CE; Kirkpatrick R; Moore R; Barber S; Holt RA; Jones SJ; Marra MA; Douglas CJ; Ritland K; Bohlmann J BMC Genomics; 2008 Oct; 9():484. PubMed ID: 18854048 [TBL] [Abstract][Full Text] [Related]
13. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Gagalova KK; Warren RL; Coombe L; Wong J; Nip KM; Yuen MMS; Whitehill JGA; Celedon JM; Ritland C; Taylor GA; Cheng D; Plettner P; Hammond SA; Mohamadi H; Zhao Y; Moore RA; Mungall AJ; Boyle B; Laroche J; Cottrell J; Mackay JJ; Lamothe M; Gérardi S; Isabel N; Pavy N; Jones SJM; Bohlmann J; Bousquet J; Birol I Plant J; 2022 Sep; 111(5):1469-1485. PubMed ID: 35789009 [TBL] [Abstract][Full Text] [Related]
14. Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Rajora OP; Rahman MH; Dayanandan S; Mosseler A Mol Gen Genet; 2001 Feb; 264(6):871-82. PubMed ID: 11254135 [TBL] [Abstract][Full Text] [Related]
15. Plasticity in water-use efficiency of Picea sitchensis, P. glauca and their natural hybrids. Silim S; Guy R; Patterson T; Livingston N Oecologia; 2001 Aug; 128(3):317-325. PubMed ID: 24549900 [TBL] [Abstract][Full Text] [Related]
16. Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca, and P. engelmannii trees, and their putative hybrids. Nkongolo KK; Michael P; Demers T Genome; 2005 Apr; 48(2):302-11. PubMed ID: 15838553 [TBL] [Abstract][Full Text] [Related]
17. Transformation of white spruce and other conifer species byAgrobacterium tumefaciens. Ellis D; Roberts D; Sutton B; Lazaroff W; Webb D; Flinn B Plant Cell Rep; 1989 May; 8(1):16-20. PubMed ID: 24232587 [TBL] [Abstract][Full Text] [Related]
18. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Hamilton JA; Lexer C; Aitken SN Mol Ecol; 2013 Feb; 22(3):827-41. PubMed ID: 22967172 [TBL] [Abstract][Full Text] [Related]
19. Impact of genetic variation and long-term limited water availability on the ecophysiology of young Sitka spruce (Picea sitchensis (Bong.) Carr.). Grant OM; O'Reilly C Tree Physiol; 2017 Apr; 37(4):536-549. PubMed ID: 27677274 [TBL] [Abstract][Full Text] [Related]