These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24232477)

  • 1. Differences in response to the toxin sirodesmin PL produced by Phoma lingam (Tode ex fr.) Desm. on protoplasts, cell aggregates and intact plants of resistant and susceptible Brassica accessions.
    Sjödin C; Glimelius K
    Theor Appl Genet; 1989 Jan; 77(1):76-80. PubMed ID: 24232477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection.
    Sjödin C; Glimelius K
    Theor Appl Genet; 1989 Oct; 78(4):513-20. PubMed ID: 24225678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vital staining of plant cell suspension cultures: evaluation of the phytotoxic activity of the phytotoxins phomalide and destruxin B.
    Pedras MSC; Biesenthal CJ
    Plant Cell Rep; 2000 Nov; 19(11):1135-1138. PubMed ID: 30754782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Outbreak of Blackleg Caused by Phoma lingam in Commercial Canola Fields in Argentina.
    Gaetán SA
    Plant Dis; 2005 Apr; 89(4):435. PubMed ID: 30795477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and biological activity of maculansin A, a phytotoxin from the phytopathogenic fungus Leptosphaeria maculans.
    Pedras MS; Yu Y
    Phytochemistry; 2008 Dec; 69(17):2966-71. PubMed ID: 18977007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wasalexins A and B, new phytoalexins from wasabi: isolation, synthesis, and antifungal activity.
    Pedras MS; Sorensen JL; Okanga FI; Zaharia IL
    Bioorg Med Chem Lett; 1999 Oct; 9(20):3015-20. PubMed ID: 10571166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interactions of the phytotoxins destruxin B and sirodesmin PL with crucifers and cereals: metabolism and elicitation of plant defenses.
    Pedras MS; Khallaf I
    Phytochemistry; 2012 May; 77():129-39. PubMed ID: 22414311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance responses to Phoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus.
    Sacristán MD
    Theor Appl Genet; 1982 Sep; 61(3):193-200. PubMed ID: 24270428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phomapyrones from blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity.
    Pedras MS; Chumala PB
    Phytochemistry; 2005 Jan; 66(1):81-7. PubMed ID: 15649514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phomenoic acid and phomenolactone, antifungal substances from Phoma lingam (Tode) Desm.: kinetics of their biosynthesis, with an optimization of the isolation procedures.
    Topgi RS; Devys M; Bousquet JF; Kollmann A; Barbier M
    Appl Environ Microbiol; 1987 May; 53(5):966-8. PubMed ID: 3606100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Host-Selective Phytotoxicity: Synthesis and Biological Activity of Phomalide, Isophomalide, and Dihydrophomalide.
    Ward DE; Vázquez A; Pedras MS
    J Org Chem; 1999 Mar; 64(5):1657-1666. PubMed ID: 11674233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus.
    Elliott CE; Gardiner DM; Thomas G; Cozijnsen A; VAN DE Wouw A; Howlett BJ
    Mol Plant Pathol; 2007 Nov; 8(6):791-802. PubMed ID: 20507539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,5-dioxopiperazine by a new isolate type of the blackleg fungus Phoma lingam.
    Pedras MS; Smith KC; Taylor JL
    Phytochemistry; 1998 Nov; 49(6):1575-1577. PubMed ID: 11711067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brassica naponigra, a somatic hybrid resistant to Phoma lingam.
    Sjödin C; Glimelius K
    Theor Appl Genet; 1989 May; 77(5):651-6. PubMed ID: 24232797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction and purification of chitinase in Brassica napus L. ssp. oleifera infected with Phoma lingam.
    Rasmussen U; Giese H; Mikkelsen JD
    Planta; 1992 Jun; 187(3):328-34. PubMed ID: 24178073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New sesquiterpenic phytotoxins establish unprecedented relationship between different groups of blackleg fungal isolates.
    Pedras MS; Chumala PB; Venkatesham U
    Bioorg Med Chem; 2005 Apr; 13(7):2469-75. PubMed ID: 15755649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC analyses of cultures of Phoma spp.: differentiation among groups and species through secondary metabolite profiles.
    Pedras MS; Biesenthal CJ
    Can J Microbiol; 2000 Aug; 46(8):685-91. PubMed ID: 10941513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam.
    Pedras MS; Biesenthal CJ
    Phytochemistry; 2001 Nov; 58(6):905-9. PubMed ID: 11684188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a pathogen-induced chitinase in Brassica napus.
    Rasmussen U; Bojsen K; Collinge DB
    Plant Mol Biol; 1992 Oct; 20(2):277-87. PubMed ID: 1391771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Capacity Differentiates
    Frąc M; Kaczmarek J; Jędryczka M
    Pathogens; 2022 Jan; 11(1):. PubMed ID: 35055998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.