These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24233607)

  • 1. Application of angle-resolved fluorescence depolarization in muscle research.
    van der Heide UA; Gerritsen HC; de Beer EL; Schiereck P; Levine YK
    J Fluoresc; 1994 Dec; 4(4):323-6. PubMed ID: 24233607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence depolarization study of the orientational distribution of crossbridges in muscle fibres.
    van der Heide UA; Rem OE; Gerritsen HC; de Beer EL; Schiereck P; Trayer IP; Levine YK
    Eur Biophys J; 1994; 23(5):369-78. PubMed ID: 7835321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The orientation of transition moments of dye molecules used in fluorescence studies of muscle systems.
    van der Heide UA; Orbons B; Gerritsen HC; Levine YK
    Eur Biophys J; 1992; 21(4):263-72. PubMed ID: 1385106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-independent time-resolved fluorescence depolarization from ordered biological assemblies applied to restricted motion of myosin cross-bridges in muscle fibers.
    Burghardt TP; Ajtai K
    Biochemistry; 1986 Jun; 25(11):3469-78. PubMed ID: 3730371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two attached non-rigor crossbridge forms in insect flight muscle.
    Reedy MC; Reedy MK; Tregear RT
    J Mol Biol; 1988 Nov; 204(2):357-83. PubMed ID: 3221390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of nucleotide-bearing crossbridges in situ: oblique section reconstruction of insect flight muscle in AMPPNP at 23 degrees C.
    Winkler H; Reedy MC; Reedy MK; Tregear R; Taylor KA
    J Mol Biol; 1996 Nov; 264(2):302-22. PubMed ID: 8951378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birefringence as a probe of crossbridge orientation in demembranated muscle fibres.
    Irving M; Peckham M; Ferenczi MA
    Adv Exp Med Biol; 1988; 226():299-306. PubMed ID: 3407517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of order and orientation of crossbridges in rigor and relaxed muscle fibres using fluorescence polarization.
    Wilson MG; Mendelson RA
    J Muscle Res Cell Motil; 1983 Dec; 4(6):671-93. PubMed ID: 6668358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes in muscle crossbridges accompanying force generation.
    Hirose K; Franzini-Armstrong C; Goldman YE; Murray JM
    J Cell Biol; 1994 Nov; 127(3):763-78. PubMed ID: 7962058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin crossbridge orientation in demembranated muscle fibres studied by birefringence and X-ray diffraction measurements.
    Peckham M; Irving M
    J Mol Biol; 1989 Nov; 210(1):113-26. PubMed ID: 2585513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron tomography of insect flight muscle in rigor and AMPPNP at 23 degrees C.
    Schmitz H; Reedy MC; Reedy MK; Tregear RT; Winkler H; Taylor KA
    J Mol Biol; 1996 Nov; 264(2):279-301. PubMed ID: 8951377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the ATP analogue AMPPNP on the structure of crossbridges in vertebrate skeletal muscles: X-ray diffraction and mechanical studies.
    Padrón R; Huxley HE
    J Muscle Res Cell Motil; 1984 Dec; 5(6):613-55. PubMed ID: 6335887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.
    Dale RE; Hopkins SC; an der Heide UA; Marszałek T; Irving M; Goldman YE
    Biophys J; 1999 Mar; 76(3):1606-18. PubMed ID: 10049341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect crossbridges, relaxed by spin-labeled nucleotide, show well-ordered 90 degrees state by X-ray diffraction and electron microscopy, but spectra of electron paramagnetic resonance probes report disorder.
    Reedy MK; Lucaveche C; Naber N; Cooke R
    J Mol Biol; 1992 Oct; 227(3):678-97. PubMed ID: 1328652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two attached non-rigor crossbridge forms.
    Reedy MC; Reedy MK; Tregear RT
    Adv Exp Med Biol; 1988; 226():5-15. PubMed ID: 3407529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique.
    Heuser JE; Cooke R
    J Mol Biol; 1983 Sep; 169(1):97-122. PubMed ID: 6620383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of adenosine triphosphate analogues on skeletal muscle fibers in rigor.
    Schoenberg M
    Biophys J; 1989 Jul; 56(1):33-41. PubMed ID: 2546617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientational dynamics of indane dione spin-labeled myosin heads in relaxed and contracting skeletal muscle fibers.
    Roopnarine O; Thomas DD
    Biophys J; 1995 Apr; 68(4):1461-71. PubMed ID: 7787032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossbridges in the complete unit cell of rigor insect flight muscle imaged by three-dimensional reconstruction from oblique sections.
    Taylor KA; Reedy MC; Reedy MK; Crowther RA
    J Mol Biol; 1993 Sep; 233(1):86-108. PubMed ID: 8377196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.