These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 2423372)

  • 1. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides.
    Gutteridge JM
    FEBS Lett; 1986 Jun; 201(2):291-5. PubMed ID: 2423372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM; Quinlan GJ; Wilkins S
    FEBS Lett; 1984 Feb; 167(1):37-41. PubMed ID: 6321237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex.
    Gutteridge JM
    Biochem Pharmacol; 1984 Jun; 33(11):1725-8. PubMed ID: 6329216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical damage to deoxyribose by anthracycline, aureolic acid and aminoquinone antitumour antibiotics. An essential requirement for iron, semiquinones and hydrogen peroxide.
    Gutteridge JM; Quinlan GJ
    Biochem Pharmacol; 1985 Dec; 34(23):4099-103. PubMed ID: 2998399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide-dependent lipid peroxidation. Problems with the use of catalase as a specific probe for fenton-derived hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Biophys Res Commun; 1983 Dec; 117(3):901-7. PubMed ID: 6320819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.
    Rabion A; Verlhac JB; Fraisse L; Roche B; Seris JL
    Free Radic Res Commun; 1993; 19(6):409-23. PubMed ID: 8168730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxy radical as autotoxin in chemotactically activated neutrophils.
    Till GO; Lutz MJ; Ward PA
    Biomed Pharmacother; 1987; 41(6):349-54. PubMed ID: 2833323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III).
    Shi X; Dalal NS; Kasprzak KS
    Arch Biochem Biophys; 1993 Apr; 302(1):294-9. PubMed ID: 8385901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbate-stimulated lipid peroxidation in human brain is dependent on iron but not on hydroxyl radical.
    Andorn AC; Britton RS; Bacon BR
    J Neurochem; 1996 Aug; 67(2):717-22. PubMed ID: 8764600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The suppression of iron release from activated myoglobin by physiological electron donors and by desferrioxamine.
    Rice-Evans C; Okunade G; Khan R
    Free Radic Res Commun; 1989; 7(1):45-54. PubMed ID: 2806954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant properties of caeruloplasmin towards iron- and copper-dependent oxygen radical formation.
    Gutteridge JM
    FEBS Lett; 1983 Jun; 157(1):37-40. PubMed ID: 6862018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide.
    Minotti G; Aust SD
    J Biol Chem; 1987 Jan; 262(3):1098-104. PubMed ID: 3027077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM
    Biochem Pharmacol; 1984 Oct; 33(19):3059-62. PubMed ID: 6091667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for iron in reactive oxygen species-mediated cytotoxicity to cultured rat gastric mucosal cells.
    Hiraishi H; Terano A; Ota S; Mutoh H; Razandi M; Sugimoto T; Ivey KJ
    Am J Physiol; 1991 Apr; 260(4 Pt 1):G556-63. PubMed ID: 1850204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.
    Halliwell B; Gutteridge JM
    Arch Biochem Biophys; 1986 May; 246(2):501-14. PubMed ID: 3010861
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential role of hydrogen peroxide and organic hydroperoxides in augmenting ferric nitrilotriacetate (Fe-NTA)-mediated DNA damage: implications for carcinogenesis.
    Iqbal M; Sharma SD; Mizote A; Fujisawa M; Okada S
    Teratog Carcinog Mutagen; 2003; Suppl 1():13-21. PubMed ID: 12616593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.